CONVERGENCE OF ADAPTIVE DISCONTINUOUS GALERKIN METHODS

被引:5
|
作者
Kreuzer, Christian [1 ]
Georgoulis, Emmanuil H. [2 ,3 ]
机构
[1] Ruhr Univ Bochum, Fak Math, Univ Str 150, D-44801 Bochum, Germany
[2] Univ Leicester, Dept Math, Univ Rd, Leicester LE1 7RH, Leics, England
[3] Natl Tech Univ Athens, Sch Appl Math & Phys Sci, Dept Math, Zografos 15780, Greece
关键词
Adaptive discontinuous Galerkin methods; convergence; elliptic problems; POSTERIORI ERROR ESTIMATION; FINITE-ELEMENT-METHOD; INTERIOR PENALTY; MESH REFINEMENT; OPTIMALITY; ALGORITHM;
D O I
10.1090/mcom/3318
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a general convergence theory for adaptive discontinuous Galerkin methods for elliptic PDEs covering the popular SIPG, NIPG and LDG schemes as well as all practically relevant marking strategies. Another key feature of the presented result is, that it holds for penalty parameters only necessary for the standard analysis of the respective scheme. The analysis is based on a quasi-interpolation into a newly developed limit space of the adaptively created non-conforming discrete spaces, which enables us to generalise the basic convergence result for conforming adaptive finite element methods by Morin, Siebert, and Veeser [A basic convergence result for conforming adaptive finite elements, Math. Models Methods Appl. Sci., 2008, 18(5), 707-737].
引用
收藏
页码:2611 / 2640
页数:30
相关论文
共 50 条
  • [1] CORRIGENDUM TO "CONVERGENCE OF ADAPTIVE, DISCONTINUOUS GALERKIN METHODS"
    Kreuzer, Christian
    Georgoulis, Emmanuil H.
    [J]. MATHEMATICS OF COMPUTATION, 2021, 90 (328) : 637 - 640
  • [2] CONVERGENCE ANALYSIS OF THE LOWEST ORDER WEAKLY PENALIZED ADAPTIVE DISCONTINUOUS GALERKIN METHODS
    Gudi, Thirupathi
    Guzman, Johnny
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (03): : 753 - 764
  • [3] Adaptive discontinuous Galerkin methods on surfaces
    Dedner, Andreas
    Madhavan, Pravin
    [J]. NUMERISCHE MATHEMATIK, 2016, 132 (02) : 369 - 398
  • [4] Adaptive discontinuous Galerkin methods on surfaces
    Andreas Dedner
    Pravin Madhavan
    [J]. Numerische Mathematik, 2016, 132 : 369 - 398
  • [5] Adaptive discontinuous Galerkin methods in multiwavelets bases
    Archibald, Rick
    Fann, George
    Shelton, William
    [J]. APPLIED NUMERICAL MATHEMATICS, 2011, 61 (07) : 879 - 890
  • [6] Adaptive spacetime meshing for discontinuous Galerkin methods
    Thite, Shripad
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2009, 42 (01): : 20 - 44
  • [7] Adaptive Discontinuous Galerkin Methods on Polytopic Meshes
    Collis, Joe
    Houston, Paul
    [J]. ADVANCES IN DISCRETIZATION METHODS: DISCONTINUITIES, VIRTUAL ELEMENTS, FICTITIOUS DOMAIN METHODS, 2016, 12 : 187 - 206
  • [8] Convergence of adaptive mixed interior penalty discontinuous Galerkin methods for H(curl)-elliptic problems
    Liu, Kai
    Tang, Ming
    Xing, Xiaoqing
    Zhong, Liuqiang
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 170 : 84 - 94
  • [9] Convergence of an adaptive discontinuous Galerkin method for elliptic interface problems
    Cangiani, Andrea
    Georgoulis, Emmanuil H.
    Sabawi, Younis A.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 367
  • [10] CONVERGENCE ANALYSIS OF AN ADAPTIVE INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD
    Hoppe, R. H. W.
    Kanschat, G.
    Warburton, T.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 47 (01) : 534 - 550