Application of Satellite-Based and Observed Precipitation Datasets for Hydrological Simulation in the Upper Mahi River Basin of Rajasthan, India

被引:9
|
作者
Bhati, Dinesh Singh [1 ]
Dubey, Swatantra Kumar [2 ]
Sharma, Devesh [3 ]
机构
[1] Cent Univ Rajasthan, Dept Environm Sci, NH-8, Ajmer 305817, Rajasthan, India
[2] Sikkim Univ, Dept Geol, Gangtok 737102, Sikkim, India
[3] Cent Univ Rajasthan, Sch Earth Sci, Dept Atmospher Sci, NH-8, Ajmer 305817, Rajasthan, India
关键词
streamflow; SWAT model; TRMM; river discharge; river basin; CHANGE IMPACT ASSESSMENT; CLIMATE-CHANGE; SWAT; MODEL; CALIBRATION; RAINFALL; CATCHMENT; WATERSHEDS; PREDICTION; STREAMFLOW;
D O I
10.3390/su13147560
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hydrological modeling is an important tool used for basin management and studying the impacts of extreme events in a river basin. In streamflow simulations, precipitation plays an essential role in hydrological models. Meteorological satellite precipitation measurement techniques provide highly accurate rainfall information with high spatial and temporal resolution. In this analysis, the tropical rainfall monitoring mission (TRMM) 3B42 V7 precipitation products were employed for simulating streamflow by using the soil water assessment tool (SWAT) model. With India Metrological Department and TRMM data, the SWAT model can be used to predict streamflow discharge and identify sensitive parameters for the Mahi basin. The SWAT model was calibrated for 2 years and then independently validated for 2 years by comparing observed and simulated streamflow. A strong correlation was observed between the calibration and validation results for the Paderdibadi station, with a Nash-Sutcliffe efficiency of >0.34 and coefficient of determination (R-2) of >0.77. The SWAT model was used to adequately simulate the streamflow for the Upper Mahi basin with a satisfactory R-2 value. The analysis indicated that TRMM 3B42 V7 is useful in SWAT applications for predicting streamflow and performance and for sensitivity analysis. In addition, satellite data may require correction before its utilization in hydrological modeling. This study is helpful for stakeholders in monitoring and managing agricultural, climatic, and environmental changes.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Evaluation and hydrological application of satellite-based precipitation datasets in driving hydrological models over the Huifa river basin in Northeast China
    Zhu, Honglei
    Li, Ying
    Huang, Yanwei
    Li, Yingchen
    Hou, Cuicui
    Shi, Xiaoliang
    ATMOSPHERIC RESEARCH, 2018, 207 : 28 - 41
  • [2] Evaluating satellite-based and reanalysis precipitation datasets with gauge-observed data and hydrological modeling in the Xihe River Basin, China
    Wang, Ning
    Liu, Wenbin
    Sun, Fubao
    Yao, Zhihong
    Wang, Hong
    Liu, Wanqing
    ATMOSPHERIC RESEARCH, 2020, 234
  • [3] Evaluation of satellite-based and reanalysis precipitation datasets by hydrologic simulation in the Chenab river basin
    Ougahi, Jamal Hassan
    Mahmood, Syed Amer
    JOURNAL OF WATER AND CLIMATE CHANGE, 2022, 13 (03) : 1563 - 1582
  • [4] An assessment of global satellite-based precipitation datasets in capturing precipitation extremes: A comparison with observed precipitation dataset in India
    Gupta, Vivek
    Jain, Manoj K.
    Singh, Pushpendra K.
    Singh, Vishal
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2020, 40 (08) : 3667 - 3688
  • [5] Downscaling of TRMM satellite precipitation products and its application in hydrological simulation of Xiangjiang River Basin
    Fan T.
    Zhang X.
    Huang B.
    Qian Z.
    Huang L.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (15): : 179 - 188
  • [6] Evaluation and comparison of four satellite-based precipitation products over the upper Tana River Basin
    F. Polong
    Q. B. Pham
    D. T. Anh
    K. U. Rahman
    M. Shahid
    R. S. Alharbi
    International Journal of Environmental Science and Technology, 2023, 20 : 843 - 858
  • [7] Evaluation and comparison of four satellite-based precipitation products over the upper Tana River Basin
    Polong, F.
    Pham, Q. B.
    Anh, D. T.
    Rahman, K. U.
    Shahid, M.
    Alharbi, R. S.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2023, 20 (01) : 843 - 858
  • [8] Comparison of satellite-based and re-analysed precipitation as input to glacio-hydrological modelling for Beas River basin, northern India
    Li, Lu
    Engelhardt, Markus
    Xu, Chong-Yu
    Jain, Sharad K.
    Singh, V. P.
    COLD AND MOUNTAIN REGION HYDROLOGICAL SYSTEMS UNDER CLIMATE CHANGE: TOWARDS IMPROVED PROJECTIONS, 2013, 360 : 45 - 52
  • [9] Evaluation of observed and satellite-based climate products for hydrological simulation in data-scarce Baro-Akob River Basin, Ethiopia
    Mengistu, Abiy Getachew
    Woldesenbet, Tekalegn Ayele
    Dile, Yihun Taddele
    ECOHYDROLOGY & HYDROBIOLOGY, 2022, 22 (02) : 234 - 245
  • [10] Merging ground and satellite-based precipitation data sets for improved hydrological simulations in the Xijiang River basin of China
    Chen, Tao
    Ren, Liliang
    Yuan, Fei
    Tang, Tiantian
    Yang, Xiaoli
    Jiang, Shanhu
    Liu, Yi
    Zhao, Chongxu
    Zhang, Limin
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2019, 33 (10) : 1893 - 1905