Salp swarm algorithm: a comprehensive survey

被引:272
|
作者
Abualigah, Laith [1 ]
Shehab, Mohammad [2 ]
Alshinwan, Mohammad [1 ]
Alabool, Hamzeh [3 ]
机构
[1] Amman Arab Univ, Fac Comp Sci & Informat, Amman, Jordan
[2] Aqaba Univ Technol, Dept Comp Sci, Aqaba, Jordan
[3] Saudi Elect Univ, Coll Comp & Informat, Abha, Saudi Arabia
来源
NEURAL COMPUTING & APPLICATIONS | 2020年 / 32卷 / 15期
关键词
Salp swarm algorithm; Meta-heuristic optimization algorithms; Optimization problems; Bio-inspired algorithms; KRILL HERD ALGORITHM; OPTIMIZATION ALGORITHM; PARAMETERS IDENTIFICATION; PV SYSTEMS; CONTROLLER; SEARCH; DESIGN;
D O I
10.1007/s00521-019-04629-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper completely introduces an exhaustive and a comprehensive review of the so-called salp swarm algorithm (SSA) and discussions its main characteristics. SSA is one of the efficient recent meta-heuristic optimization algorithms, where it has been successfully utilized in a wide range of optimization problems in different fields, such as machine learning, engineering design, wireless networking, image processing, and power energy. This review shows the available literature on SSA, including its variants, like binary, modifications and multi-objective. Followed by its applications, assessment and evaluation, and finally the conclusions, which focus on the current works on SSA, suggest possible future research directions.
引用
收藏
页码:11195 / 11215
页数:21
相关论文
共 50 条
  • [1] Salp swarm algorithm: a comprehensive survey
    Laith Abualigah
    Mohammad Shehab
    Mohammad Alshinwan
    Hamzeh Alabool
    Neural Computing and Applications, 2020, 32 : 11195 - 11215
  • [2] A Boosted Communicational Salp Swarm Algorithm: Performance Optimization and Comprehensive Analysis
    Lin, Chao
    Wang, Pengjun
    Heidari, Ali Asghar
    Zhao, Xuehua
    Chen, Huiling
    JOURNAL OF BIONIC ENGINEERING, 2023, 20 (03) : 1296 - 1332
  • [3] A Comprehensive Improved Salp Swarm Algorithm on Redundant Container Deployment Problem
    Ma, Botao
    Ni, Hong
    Zhu, Xiaoyong
    Zhao, Ran
    IEEE ACCESS, 2019, 7 : 136452 - 136470
  • [4] A Boosted Communicational Salp Swarm Algorithm: Performance Optimization and Comprehensive Analysis
    Chao Lin
    Pengjun Wang
    Ali Asghar Heidari
    Xuehua Zhao
    Huiling Chen
    Journal of Bionic Engineering, 2023, 20 : 1296 - 1332
  • [5] Elite dominance scheme ingrained adaptive salp swarm algorithm: a comprehensive study
    Zhao, Songwei
    Wang, Pengjun
    Zhao, Xuehua
    Turabieh, Hamza
    Mafarja, Majdi
    Chen, Huiling
    ENGINEERING WITH COMPUTERS, 2022, 38 (SUPPL 5) : 4501 - 4528
  • [6] Elite dominance scheme ingrained adaptive salp swarm algorithm: a comprehensive study
    Songwei Zhao
    Pengjun Wang
    Xuehua Zhao
    Hamza Turabieh
    Majdi Mafarja
    Huiling Chen
    Engineering with Computers, 2022, 38 : 4501 - 4528
  • [7] A fitness dependent salp swarm algorithm
    Pelusi, Danilo
    Mascella, Raffaele
    Tallini, Luca
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [8] VIGILANT SALP SWARM ALGORITHM FOR FEATURE SELECTION
    Arunekumar, N. B.
    Joseph, K. Suresh
    Viswanath, J.
    Anbarasi, A.
    Padmapriya, N.
    COMPUTING AND INFORMATICS, 2023, 42 (04) : 805 - 833
  • [9] Application of mutation operators to salp swarm algorithm
    Salgotra, Rohit
    Singh, Urvinder
    Singh, Gurdeep
    Singh, Supreet
    Gandomi, Amir H.
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 169
  • [10] Improved salp swarm algorithm for feature selection
    Hegazy, Ah. E.
    Makhlouf, M. A.
    El-Tawel, Gh. S.
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2020, 32 (03) : 335 - 344