Optimality and duality for multiple-objective optimization under generalized type I univexity

被引:20
|
作者
Mishra, SK
Wang, SY [1 ]
Lai, KK
机构
[1] Chinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Raja Balwant Singh Coll, Fac Engn & Technol, Dept Math, Agra 283105, Uttar Pradesh, India
[3] City Univ Hong Kong, Dept Management Sci, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.jmaa.2004.08.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we extend the classes of generalized type I vector-valued functions introduced by Aghezzaf and Hachimi in [J. Global Optim. 18 (2000) 91-101] to generalized univex type I vector-valued functions and consider a multiple-objective optimization problem involving generalized type I univex functions. A number of Kuhn-Tucker type sufficient optimality conditions are obtained for a feasible solution to be an efficient solution. The Mond-Weir and general Mond-Weir type duality results are also presented. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:315 / 326
页数:12
相关论文
共 50 条