Nonlinear filtering with degenerate noise

被引:0
|
作者
Fotsa-Mbogne, David Jaures [1 ]
Pardoux, Etienne [2 ]
机构
[1] Univ Ngaoundere, ENSAI, Dept Math & Comp Sci, Ngaoundere, Cameroon
[2] Aix Marseille Univ, CNRS, Cent Marseille, I2M, Marseille, France
关键词
nonlinear filtering; singular observation noise;
D O I
10.1214/17-ECP74
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies a new type of filtering problem, where the diffusion coefficient of the observation noise is strictly positive only in the interior of the bounded interval where observation takes its values. We derive a Zakai and a Kushner-Stratonovich equation, and prove uniqueness of the measure-valued solution of the Zakai equation.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] Filtering with degenerate observation noise: A stochastic approximation approach
    Qian, Hongjiang
    Zhang, Qing
    Yin, George
    [J]. AUTOMATICA, 2022, 142
  • [2] OPTIMAL LINEAR-FILTERING WITH DEGENERATE OBSERVATION NOISE
    BUTOV, AA
    [J]. AUTOMATION AND REMOTE CONTROL, 1980, 41 (11) : 1506 - 1511
  • [3] Nonlinear inverse filtering in the presence of noise
    Broomhead, DS
    Huke, JP
    [J]. CHAOTIC, FRACTAL, AND NONLINEAR SIGNAL PROCESSING, 1996, (375): : 337 - 359
  • [4] ON THE DEGENERATE PARABOLIC PARTIAL-DIFFERENTIAL EQUATIONS OF NONLINEAR FILTERING
    FERREYRA, GS
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1985, 10 (06) : 555 - 634
  • [5] Nonlinear filtering with signal dependent observation noise
    Crisan, Dan
    Kouritzin, Michael
    Xiong, Jie
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 : 1863 - 1883
  • [6] WHITE NOISE CALCULUS AND NONLINEAR FILTERING THEORY
    KALLIANPUR, G
    KARANDIKAR, RL
    [J]. ANNALS OF PROBABILITY, 1985, 13 (04): : 1033 - 1107
  • [7] Nonlinear noise filtering with support vector regression
    Zhang Jian
    Peng Qicong
    Shao Huaizong
    Shao Tiange
    [J]. ISDA 2006: SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 1, 2006, : 172 - 176
  • [8] Nonlinear filtering with fractional Brownian motion noise
    Zhao, X
    Zhao, XQ
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2005, 23 (01) : 55 - 67
  • [9] Nonlinear filtering of non-Gaussian noise
    Plataniotis, KN
    Androutsos, D
    Venetsanopoulos, AN
    [J]. JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 1997, 19 (02) : 207 - 231
  • [10] Nonlinear Kalman filtering in the presence of additive noise
    Kraszewski, Tomasz
    Czopik, Grzegorz
    [J]. XI CONFERENCE ON RECONNAISSANCE AND ELECTRONIC WARFARE SYSTEMS, 2017, 10418