Wavelength Controllable Forward Prediction and Inverse Design of Nanophotonic Devices Using Deep Learning

被引:3
|
作者
Song, Yuchen [1 ]
Wang, Danshi [1 ]
Ye, Han [1 ]
Qin, Jun [2 ]
Zhang, Min [1 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Peking Univ, State Key Lab Adv Opt Commun Syst & Networks, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/ECOC48923.2020.9333397
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A deep learning-based wavelength controllable forward prediction and inverse design model of nanophotonic devices is proposed, Both the target time-domain and wavelength-domain information can be utilized simultaneously, which enables multiple functions, including power splitter and wavelength demultiplexer, to be implemented efficiently and flexibly.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Physical Information-Embedded Deep Learning for Forward Prediction and Inverse Design of Nanophotonic Devices
    Song, Yuchen
    Wang, Danshi
    Qin, Jun
    Li, Jin
    Ye, Han
    Zhang, Zhiguo
    Chen, Xue
    Zhang, Min
    Boucouvalas, Anthony C.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2021, 39 (20) : 6498 - 6508
  • [2] Forward Prediction and Inverse Design of Nanophotonic Devices Based on Capsule Network
    Shi, Ruiyang
    Huang, Jie
    Li, Shulun
    Niu, Lingfeng
    Yang, Junbo
    IEEE PHOTONICS JOURNAL, 2022, 14 (04):
  • [3] Inverse Design of Nanophotonic Devices using Deep Neural Networks
    Kojima, Keisuke
    Tang, Yingheng
    Koike-Akino, Toshiaki
    Wang, Ye
    Jha, Devesh
    Parsons, Kieran
    Tahersima, Mohammad H.
    Sang, Fengqiao
    Klamkin, Jonathan
    Qi, Minghao
    2020 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP) AND INTERNATIONAL CONFERENCE ON INFORMATION PHOTONICS AND OPTICAL COMMUNICATIONS (IPOC), 2020,
  • [4] Generative Deep Learning Model for Inverse Design of Integrated Nanophotonic Devices
    Tang, Yingheng
    Kojima, Keisuke
    Koike-Akino, Toshiaki
    Wang, Ye
    Wu, Pengxiang
    Xie, Youye
    Tahersima, Mohammad H.
    Jha, Devesh K.
    Parsons, Kieran
    Qi, Minghao
    LASER & PHOTONICS REVIEWS, 2020, 14 (12)
  • [5] Deep Neural Networks for Inverse Design of Nanophotonic Devices
    Kojima, Keisuke
    Tahersima, Mohammad H.
    Koike-Akino, Toshiaki
    Jha, Devesh K.
    Tang, Yingheng
    Wang, Ye
    Parsons, Kieran
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2021, 39 (04) : 1010 - 1019
  • [6] A cyclical deep learning based framework for simultaneous inverse and forward design of nanophotonic metasurfaces
    Abhishek Mall
    Abhijeet Patil
    Amit Sethi
    Anshuman Kumar
    Scientific Reports, 10
  • [7] A cyclical deep learning based framework for simultaneous inverse and forward design of nanophotonic metasurfaces
    Mall, Abhishek
    Patil, Abhijeet
    Sethi, Amit
    Kumar, Anshuman
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [8] Nanophotonic structure inverse design for switching application using deep learning
    Adibnia, Ehsan
    Ghadrdan, Majid
    Mansouri-Birjandi, Mohammad Ali
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [9] Efficient inverse design and spectrum prediction for nanophotonic devices based on deep recurrent neural networks
    Yan, Ruoqin
    Wang, Tao
    Jiang, Xiaoyun
    Huang, Xing
    Wang, Lu
    Yue, Xinzhao
    Wang, Huimin
    Wang, Yuandong
    NANOTECHNOLOGY, 2021, 32 (33)
  • [10] Controllable inverse design of auxetic metamaterials using deep learning
    Zheng, Xiaoyang
    Chen, Ta-Te
    Guo, Xiaofeng
    Samitsu, Sadaki
    Watanabe, Ikumu
    MATERIALS & DESIGN, 2021, 211