On the pronormality of subgroups of odd index in finite simple symplectic groups

被引:9
|
作者
Kondrat'ev, A. S. [1 ]
Maslova, N. V. [1 ]
Revin, D. O. [2 ,3 ]
机构
[1] Ural Fed Univ, Krasovskii Inst Math & Mech, Ekaterinburg, Russia
[2] Novosibirsk State Univ, Sobolev Inst Math, Novosibirsk, Russia
[3] Univ Sci & Technol China, Dept Math, Hefei, Peoples R China
关键词
finite group; simple group; symplectic group; pronormal subgroup; odd index;
D O I
10.1134/S0037446617030107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup H of a group G is pronormal if the subgroups H and H (g) are conjugate in aOE (c) H,H (g) > for every g a G. It was conjectured in [1] that a subgroup of a finite simple group having odd index is always pronormal. Recently the authors [2] verified this conjecture for all finite simple groups other than PSL (n) (q), PSU (n) (q), E (6)(q), (2) E (6)(q), where in all cases q is odd and n is not a power of 2, and P Sp(2n) (q), where q ae<inverted exclamation> +/- 3 (mod 8). However in [3] the authors proved that when q ae<inverted exclamation> +/- 3 (mod 8) and n ae<inverted exclamation> 0 (mod 3), the simple symplectic group P Sp(2n) (q) has a nonpronormal subgroup of odd index, thereby refuted the conjecture on pronormality of subgroups of odd index in finite simple groups. The natural extension of this conjecture is the problem of classifying finite nonabelian simple groups in which every subgroup of odd index is pronormal. In this paper we continue to study this problem for the simple symplectic groups P Sp(2n) (q) with q ae<inverted exclamation> +/- 3 (mod 8) (if the last condition is not satisfied, then subgroups of odd index are pronormal). We prove that whenever n is not of the form 2 (m) or 2 (m) (2(2k) +1), this group has a nonpronormal subgroup of odd index. If n = 2 (m) , then we show that all subgroups of P Sp(2n) (q) of odd index are pronormal. The question of pronormality of subgroups of odd index in P Sp(2n) (q) is still open when n = 2 (m) (2(2k) + 1) and q ae<inverted exclamation> +/- 3 (mod 8).
引用
收藏
页码:467 / 475
页数:9
相关论文
共 50 条
  • [1] On the pronormality of subgroups of odd index in finite simple symplectic groups
    A. S. Kondrat’ev
    N. V. Maslova
    D. O. Revin
    [J]. Siberian Mathematical Journal, 2017, 58 : 467 - 475
  • [2] On the pronormality of subgroups of odd index in finite simple groups
    Kondrat'ev, A. S.
    Maslova, N. V.
    Revin, D. O.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2015, 56 (06) : 1101 - 1107
  • [3] On the pronormality of subgroups of odd index in finite simple groups
    A. S. Kondrat’ev
    N. V. Maslova
    D. O. Revin
    [J]. Siberian Mathematical Journal, 2015, 56 : 1101 - 1107
  • [4] On the Pronormality of Subgroups of Odd Index in Some Extensions of Finite Groups
    Guo, W.
    Maslova, N. V.
    Revin, D. O.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2018, 59 (04) : 610 - 622
  • [5] On the Pronormality of Subgroups of Odd Index in Some Extensions of Finite Groups
    W. Guo
    N. V. Maslova
    D. O. Revin
    [J]. Siberian Mathematical Journal, 2018, 59 : 610 - 622
  • [6] On the pronormality of subgroups of odd index in some direct products of finite groups
    Maslova, N., V
    Revin, D. O.
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (04)
  • [7] Pronormality of Hall subgroups in finite simple groups
    E. P. Vdovin
    D. O. Revin
    [J]. Siberian Mathematical Journal, 2012, 53 (3) : 419 - 430
  • [8] MAXIMAL SUBGROUPS OF ODD INDEX IN FINITE GROUPS WITH SIMPLE LINEAR, UNITARY, OR SYMPLECTIC SOCLE
    Maslova, N. V.
    [J]. ALGEBRA AND LOGIC, 2011, 50 (02) : 133 - 145
  • [9] Maximal subgroups of odd index in finite groups with simple linear, unitary, or symplectic socle
    N. V. Maslova
    [J]. Algebra and Logic, 2011, 50 : 133 - 145
  • [10] PRONORMALITY OF HALL SUBGROUPS IN FINITE SIMPLE GROUPS
    Vdovin, E. P.
    Revin, D. O.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (03) : 419 - 430