DeepPurpose: a deep learning library for drug-target interaction prediction

被引:195
|
作者
Huang, Kexin [1 ]
Fu, Tianfan [2 ]
Glass, Lucas M. [3 ]
Zitnik, Marinka [1 ]
Xiao, Cao [3 ]
Sun, Jimeng [4 ]
机构
[1] Harvard Univ, Boston, MA 02115 USA
[2] Georgia Inst Technol, Atlanta, GA 30332 USA
[3] IQVIA, Cambridge, MA 02139 USA
[4] Univ Illinois, Urbana, IL 61801 USA
关键词
D O I
10.1093/bioinformatics/btaa1005
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A Summary: Accurate prediction of drug-target interactions (DTI) is crucial for drug discovery. Recently, deep learning (DL) models for show promising performance for DTI prediction. However, these models can be difficult to use for both computer scientists entering the biomedical field and bioinformaticians with limited DL experience. We present DeepPurpose, a comprehensive and easy-to-use DL library for DTI prediction. DeepPurpose supports training of customized DTI prediction models by implementing 15 compound and protein encoders and over 50 neural architectures, along with providing many other useful features. We demonstrate state-of-the-art performance of DeepPurpose on several benchmark datasets.
引用
收藏
页码:5545 / 5547
页数:3
相关论文
共 50 条
  • [1] Drug-target interaction prediction with deep learning
    YANG Shuo
    LI Shi-liang
    LI Hong-lin
    [J]. 中国药理学与毒理学杂志, 2019, (10) : 855 - 855
  • [2] Deep-Learning-Based Drug-Target Interaction Prediction
    Wen, Ming
    Zhang, Zhimin
    Niu, Shaoyu
    Sha, Haozhi
    Yang, Ruihan
    Yun, Yonghuan
    Lu, Hongmei
    [J]. JOURNAL OF PROTEOME RESEARCH, 2017, 16 (04) : 1401 - 1409
  • [3] Drug-target Interaction Prediction via Multiple Output Deep Learning
    Ye, Qing
    Zhang, Xiaolong
    Lin, Xiaoli
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 507 - 510
  • [4] Drug-target interaction prediction with a deep-learning-based model
    Xie, Lingwei
    Zhang, Zhongnan
    He, Song
    Bo, Xiaochen
    Song, Xinyu
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 469 - 476
  • [5] Machine Learning for Drug-Target Interaction Prediction
    Chen, Ruolan
    Liu, Xiangrong
    Jin, Shuting
    Lin, Jiawei
    Liu, Juan
    [J]. MOLECULES, 2018, 23 (09):
  • [6] Transfer learning for drug-target interaction prediction
    Dalkiran, Alperen
    Atakan, Ahmet
    Rifaioglu, Ahmet S.
    Martin, Maria J.
    Atalay, Renguel Cetin
    Acar, Aybar C.
    Dogan, Tunca
    Atalay, Volkan
    [J]. BIOINFORMATICS, 2023, 39 : I103 - I110
  • [7] Transfer learning for drug-target interaction prediction
    Dalkiran, Alperen
    Atakan, Ahmet
    Rifaioglu, Ahmet S.
    Martin, Maria J.
    Atalay, Rengul Cetin
    Acar, Aybar C.
    Dogan, Tunca
    Atalay, Volkan
    [J]. BIOINFORMATICS, 2023, 39 : i103 - i110
  • [8] Drug-Target Interaction Prediction: End-to-End Deep Learning Approach
    Monteiro, Nelson R. C.
    Ribeiro, Bernardete
    Arrais, Joel P.
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (06) : 2364 - 2374
  • [9] Application of Machine Learning for Drug-Target Interaction Prediction
    Xu, Lei
    Ru, Xiaoqing
    Song, Rong
    [J]. FRONTIERS IN GENETICS, 2021, 12
  • [10] Ensemble Learning Algorithm for Drug-Target Interaction Prediction
    Pathak, Sudipta
    Cai, Xingyu
    [J]. 2017 IEEE 7TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ADVANCES IN BIO AND MEDICAL SCIENCES (ICCABS), 2017,