Combining reconstruction and discrimination with class-specific sparse coding

被引:9
|
作者
Hasler, Stephan [1 ]
Wersing, Heiko [1 ]
Koerner, Edgar [1 ]
机构
[1] Honda Res Inst Europe GmbH, D-63073 Offenbach, Germany
关键词
D O I
10.1162/neco.2007.19.7.1897
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sparse coding is an important approach for the unsupervised learning of sensory features. In this contribution, we present two new methods that extend the traditional sparse coding approach with supervised components. Our goal is to increase the suitability of the learned features for classification tasks while keeping most of their general representation capability. We analyze the effect of the new methods using visualization on artificial data and discuss the results on two object test sets with regard to the properties of the found feature representation.
引用
收藏
页码:1897 / 1918
页数:22
相关论文
共 50 条
  • [1] Class-specific sparse coding for learning of object representations
    Hasler, S
    Wersing, H
    Körner, E
    [J]. ARTIFICIAL NEURAL NETWORKS: BIOLOGICAL INSPIRATIONS - ICANN 2005, PT 1, PROCEEDINGS, 2005, 3696 : 475 - 480
  • [2] Sparse coding and dictionary learning with class-specific group sparsity
    Yuping Sun
    Yuhui Quan
    Jia Fu
    [J]. Neural Computing and Applications, 2018, 30 : 1265 - 1275
  • [3] Sparse coding and dictionary learning with class-specific group sparsity
    Sun, Yuping
    Quan, Yuhui
    Fu, Jia
    [J]. NEURAL COMPUTING & APPLICATIONS, 2018, 30 (04): : 1265 - 1275
  • [4] CLASS-SPECIFIC SPARSE CODES FOR REPRESENTING ACTIVITIES
    Umakanthan, Sabanadesan
    Denman, Simon
    Fookes, Clinton
    Sridharan, Sridha
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4902 - 4906
  • [5] Class-specific Reconstruction Transfer Learning via Sparse Low-rank Constraint
    Wang, Shanshan
    Zhang, Lei
    Zuo, Wangmeng
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 949 - 957
  • [6] Speech music discrimination using class-specific features
    Beierholm, T
    Baggenstoss, PM
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, 2004, : 379 - 382
  • [7] Class-Specific Sparse Principal Component Analysis for Visual Classification
    Pan, Fei
    Pan, Fei
    Zhang, Zai-Xu
    Liu, Bao-Di
    Xie, Ji-Jun
    [J]. IEEE Access, 2020, 8 : 110033 - 110047
  • [8] Class-Specific Sparse Principal Component Analysis for Visual Classification
    Pan, Fei
    Zhang, Zai-Xu
    Liu, Bao-Di
    Xie, Ji-Jun
    [J]. IEEE ACCESS, 2020, 8 : 110033 - 110047
  • [9] Class-Specific Semantic Reconstruction for Open Set Recognition
    Huang, Hongzhi
    Wang, Yu
    Hu, Qinghua
    Cheng, Ming-Ming
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 4214 - 4228
  • [10] COMBINING GENERIC AND CLASS-SPECIFIC CODEBOOKS FOR OBJECT CATEGORIZATION AND DETECTION
    Pan, Hong
    Zhu, YaPing
    Xia, LiangZheng
    Truong Q. Nguyen
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2264 - 2267