The Comparative Analysis of Single-Objective and Multi-objective Evolutionary Feature Selection Methods

被引:0
|
作者
Ali, Syed Imran [1 ]
Lee, Sungyoung [1 ]
机构
[1] Kyung Hee Univ, Dept Comp Sci & Engn, Yongin, South Korea
关键词
Single-objective feature selection; Multi-objective feature selection; Model complexity; Decision tree; Rule-based classifier; GENETIC ALGORITHM;
D O I
10.1007/978-3-030-19063-7_76
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This research presents a comparative analysis of single-objective and multi-objective evolutionary feature selection methods over interpretable models. The question taken in this research is to investigate the role of aforementioned techniques for feature selection on classification model's interpretability as well as accuracy. Since, feature selection is a non-deterministic polynomial-time hardness (NP-hard) problem therefore exhaustively searching for all the possible feature sets is not computationally feasible. Evolutionary algorithms provide a very powerful searching mechanism that is utilized for candidate feature generation in a reasonable time frame. Single-objective (SO) algorithms are generally geared towards finding a subset of candidate feature set which achieves highest evaluation score e.g. classification accuracy. On the other hand, multi-objective (MO) methods are relatively more comprehensive than their counterparts. MO feature selection algorithms can simultaneously optimize two or more objectives such as classification accuracy of a final feature set along with the cardinality of the feature set. In this research, we have selected two representative feature selection algorithms from both the groups. Decision tree and a rule-based classifiers are used for the performance evaluation in terms of interpretability i.e. model size, and predictive accuracy. This research is undertaken to investigate application of SO and MO feature selection methods on small to medium sized classification datasets. The experimental results on 3 interpretable classification models indicate that the relative differences between the two set of models on small datasets may not be much pronounced, yet for the medium-sized datasets MO models provide a promising alternative. Although multi-objective techniques resulted in smaller feature subsets in general, but overall the difference between both the single-objective and the multi-objective feature subset selection techniques, investigated in this study, is not statistical significant.
引用
收藏
页码:975 / 985
页数:11
相关论文
共 50 条
  • [1] Dynamic multi-objective evolutionary algorithms for single-objective optimization
    Jiao, Ruwang
    Zeng, Sanyou
    Alkasassbeh, Jawdat S.
    Li, Changhe
    APPLIED SOFT COMPUTING, 2017, 61 : 793 - 805
  • [2] Using multi-objective evolutionary algorithms for single-objective optimization
    Carlos Segura
    Carlos A. Coello Coello
    Gara Miranda
    Coromoto León
    4OR, 2013, 11 : 201 - 228
  • [3] Using multi-objective evolutionary algorithms for single-objective optimization
    Segura, Carlos
    Coello Coello, Carlos A.
    Miranda, Gara
    Leon, Coromoto
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2013, 11 (03): : 201 - 228
  • [4] Analysis of Single-Objective and Multi-Objective Evolutionary Algorithms in Keyword Cluster Optimization
    Dorfer, Viktoria
    Winkler, Stephan M.
    Kern, Thomas
    Petz, Gerald
    Faschang, Patrizia
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2011, PT I, 2012, 6927 : 408 - 415
  • [5] Multi-objective Evolutionary Feature Selection
    Kundu, Partha Pratim
    Mitra, Sushmita
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2009, 5909 : 74 - 79
  • [6] Guiding single-objective optimization using multi-objective methods
    Jensen, MT
    APPLICATIONS OF EVOLUTIONARY COMPUTING, 2003, 2611 : 268 - 279
  • [7] Using multi-objective evolutionary algorithms for single-objective constrained and unconstrained optimization
    Segura, Carlos
    Coello Coello, Carlos A.
    Miranda, Gara
    Leon, Coromoto
    ANNALS OF OPERATIONS RESEARCH, 2016, 240 (01) : 217 - 250
  • [8] Using multi-objective evolutionary algorithms for single-objective constrained and unconstrained optimization
    Carlos Segura
    Carlos A. Coello Coello
    Gara Miranda
    Coromoto León
    Annals of Operations Research, 2016, 240 : 217 - 250
  • [9] Global mutual information-based feature selection approach using single-objective and multi-objective optimization
    Han, Min
    Ren, Weijie
    NEUROCOMPUTING, 2015, 168 : 47 - 54
  • [10] Impacts of Single-objective Landscapes on Multi-objective Optimization
    Tanaka, Shoichiro
    Takadama, Keiki
    Sato, Hiroyuki
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,