2D CoP supported 0D WO3 constructed S-scheme for efficient photocatalytic hydrogen evolution

被引:67
|
作者
Li, Teng [1 ]
Guo, Xin [1 ]
Zhang, Lijun [1 ]
Yan, Teng [1 ]
Jin, Zhiliang [1 ]
机构
[1] North Minzu Univ, Sch Chem & Chem Engn, Ningxia Key Lab Solar Chem Convers Technol, Key Lab Chem Engn & Technol,State Ethn Affairs Co, Yinchuan 750021, Peoples R China
关键词
S-scheme heterojunction; Transition metal phosphide; Hydrogen evolution; WO < sub > 3 <; sub > nanoparticles; ELECTRON-HOLE SEPARATION; HETEROJUNCTION; WATER; NANOPARTICLES;
D O I
10.1016/j.ijhydene.2021.03.169
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For heterojunction composite photocatalyst, intimate contact interface is the key to the carrier transfer separation conditions. Due to the interface contact, the electron transfer rate between catalysts can be increased during photocatalytic hydrogen production, therefore, we design the close contact of 0D/2D heterojunction, which greatly enhanced the photocatalytic hydrogen production activity of the composite catalyst. The composite catalyst WO3/CoP was obtained by simple high temperature in situ synthesis. Moreover, it was proved by photoelectric chemistry and fluorescence tests that appropriate conduction band and valence band locations of WO3 and CoP provided a favorable way for thermodynamic electron transfer. In addition, fluorescence results showed that WO3 load effectively promoted photoelectron-hole transfer and increased electron lifetime. The formation of S-scheme heterojunctions can make more efficient use of useful photo generated electrons and prevent the photogenerated electron-hole recombination of CoP itself, further promote the liveness of photocatalytic H2 evolution. Meanwhile, the study of Metal-organic frameworks (MOFs) materials further promoted the application of MOFs derivatives in the field of photocatalytic hydrogen evolution, and provided a reference for the rational design of composite catalysts for transition metal phosphide photocatalysts. (c) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved. <comment>Superscript/Subscript Available</comment
引用
收藏
页码:20560 / 20572
页数:13
相关论文
共 50 条
  • [1] Fabrication of 0D/2D amorphous NixB/ZnIn2S4 S-scheme for enhanced photocatalytic hydrogen evolution performance
    Wang, Xiaowei
    Liu, Ying
    Qianqian, Liu
    Zhang, Weiwei
    Shi, Lei
    OPTICAL MATERIALS, 2024, 154
  • [2] 0D CoP cocatalyst/2D g-C3N4 nanosheets: An efficient photocatalyst for promoting photocatalytic hydrogen evolution
    Han, Changcun
    Zhang, Tong
    Cai, Qijun
    Ma, Chonghao
    Tong, Zhengfu
    Liu, Zhifeng
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2019, 102 (09) : 5484 - 5493
  • [3] S-scheme homojunction of 0D cubic/2D hexagonal ZnIn2S4 for efficient photocatalytic reduction of nitroarenes
    Li, Mengqing
    Ke, Suzai
    Yang, Xuhui
    Shen, Lijuan
    Yang, Min-Quan
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 674 : 547 - 559
  • [4] Peroxymonosulfate-assisted for facilitating photocatalytic degradation performance of 2D/2D WO3/BiOBr S-scheme heterojunction
    Liu, Chun
    Mao, Shuai
    Wang, Hualai
    Wu, Yi
    Wang, Fengyun
    Xia, Mingzhu
    Chen, Qun
    CHEMICAL ENGINEERING JOURNAL, 2022, 430
  • [5] 0D Pt anchoring on 2D/2D H2WO4/TiO2 S-scheme heterojunction for enhanced photocatalytic H2 evolution and simultaneous wastewater purification
    Dong, Gang
    Zhou, Tianxiang
    Wei, Wenxuan
    Ding, Xinjie
    Tang, Qi
    Shi, Wei
    Zeng, Tao
    Gui, Liangqi
    Chen, Yunxia
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 60 : 1309 - 1316
  • [6] Construction of fast charge-transferred 0D/2D BiOBr/Bi2WO6 S-scheme heterojunction with enhanced photocatalytic performance
    Pang, Ben
    Miao, Jiaming
    Wang, Haoran
    Wu, Cheng
    Wu, Linxiang
    Yuan, Guoliang
    Wang, Xiong
    APPLIED SURFACE SCIENCE, 2024, 649
  • [7] 0D/2D S-scheme heterojunction of cadmium selenide and covalent triazine frameworks with enhanced photocatalytic activity for hydrogen evolution, carbon dioxide reduction and terpene dehydrogenation
    Zheng, Yun
    Wang, Yikai
    Chen, Yilin
    Wang, Yayun
    Rao, Xiaoping
    Sun, Kang
    Jiang, Jianchun
    Qin, Chaochao
    Materials Today Chemistry, 2024, 41
  • [8] Highly efficient photocatalytic hydrogen evolution from 0D/2D heterojunction of FeP nanoparticles/CdS nanosheets
    Sun, Kouhua
    Shen, Jun
    Yang, Yantao
    Tang, Hua
    Lei, Chunsheng
    APPLIED SURFACE SCIENCE, 2020, 505
  • [9] 0D/2D Ti3+-TiO2/P-doped g-C3N4 S-scheme heterojunctions for efficient photocatalytic H2 evolution
    Yuan, Min
    Huang, Ke
    Dai, Dongqing
    Yin, Hongfei
    Zhao, Wei
    Jiang, Yixin
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2024, 184
  • [10] Morphology Matters: 0D/2D WO3 Nanoparticle-Ruthenium Oxide Nanosheet Composites for Enhanced Photocatalytic Oxygen Evolution Reaction Rates
    Vignolo-Gonzalez, Hugo A.
    Gouder, Andreas
    Laha, Sourav
    Duppel, Viola
    Carretero-Palacios, Sol
    Jimenez-Solano, Alberto
    Oshima, Takayoshi
    Schuetzenduebe, Peter
    Lotsch, Bettina, V
    ADVANCED ENERGY MATERIALS, 2023, 13 (06)