Continuous short-term irradiance forecasts using sky images

被引:55
|
作者
Bernecker, David [1 ]
Riess, Christian [1 ]
Angelopoulou, Elli [1 ]
Hornegger, Joachim [1 ]
机构
[1] Univ Erlangen Nurnberg, Dept Comp Sci, Pattern Recognit Lab, D-91058 Erlangen, Germany
关键词
Solar forecasting; Sky imaging; Global Horizontal Irradiance (GHI); Intra-hour forecast; SOLAR-RADIATION; SENSORS; NETWORK;
D O I
10.1016/j.solener.2014.09.005
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We present a system for forecasting occlusions of the sun and the expected Global Horizontal Irradiance (GHI) for solar power plants. Our system uses non-rigid registration for detecting cloud motion and a Kalman filter to establish continuous forecasts for up to 10 min. The optimal parameters of the system are determined through the use of the binary classification metrics Precision, Recall and F-2 Score while evaluating the forecasting of occlusions. The Kalman filter and the use of a dense motion field instead of a global cloud speed prove to be key elements of the forecasting pipeline: by incorporating information from previous forecasts into the current one, a Kalman filtering facilitates forecasting times below 3 min and the dense motion field enhances the accuracy of our forecasts. Our evaluation of the proposed approach on 15 days of real world data collected in Kitzingen, Bavaria, Germany, produced a mean RMSE for forecasting GHI of (164 +/- 9) W m(-2). (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:303 / 315
页数:13
相关论文
共 50 条
  • [1] Short-Term Solar Irradiance Forecasts Using Sky Images and Radiative Transfer Model
    Du, Juan
    Min, Qilong
    Zhang, Penglin
    Guo, Jinhui
    Yang, Jun
    Yin, Bangsheng
    [J]. ENERGIES, 2018, 11 (05)
  • [2] Short-term Solar Irradiance Prediction from Sky Images with a Clear Sky Model
    Gao, Huiyu
    Liu, Miaomiao
    [J]. 2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 3074 - 3082
  • [3] Using sky-classification to improve the short-term prediction of irradiance with sky images and convolutional neural networks
    Lopez, Victor Arturo Martinez
    van Urk, Gijs
    Doodkorte, Pim J. F.
    Zeman, Miro
    Isabella, Olindo
    Ziar, Hesan
    [J]. SOLAR ENERGY, 2024, 269
  • [4] Short-Term Solar Irradiance Forecasting from Future Sky Images Generation
    Hoang Chuong Nguyen
    Liu, Miaomiao
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE, AI 2023, PT I, 2024, 14471 : 15 - 27
  • [5] Short-term probabilistic forecasts for Direct Normal Irradiance
    Chu, Yinghao
    Coimbra, Carlos F. M.
    [J]. RENEWABLE ENERGY, 2017, 101 : 526 - 536
  • [6] A Hybrid Ensemble Learning Model for Short-Term Solar Irradiance Forecasting Using Historical Observations and Sky Images
    Wang, Zhongju
    Wang, Long
    Huang, Chao
    Luo, Xiong
    [J]. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2023, 59 (02) : 2041 - 2049
  • [7] A Hybrid Ensemble Learning Model for Short-Term Solar Irradiance Forecasting Using Historical Observations and Sky Images
    Wang, Zhongju
    Wang, Long
    Huang, Chao
    Luo, Xiong
    [J]. 2021 IEEE IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (IEEE I&CPS ASIA 2021), 2021, : 1404 - 1408
  • [8] Towards the short-term forecasting of direct normal irradiance using a sky imager
    Nou, Julien
    Chauvin, Remi
    Eynard, Julien
    Thil, Stephane
    Grieu, Stephane
    [J]. IFAC PAPERSONLINE, 2017, 50 (01): : 14137 - 14142
  • [9] Sky Images for Short-Term Solar Irradiance Forecast: A Comparative Study of Linear Machine Learning Models
    Shirazi, Elham
    Gordon, Ivan
    Reinders, Angele
    Catthoor, Francky
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2024, 14 (04): : 691 - 698
  • [10] A Model of Very Short-term Solar Irradiance Forecasting Based on Low-cost Sky Images
    Ai, Yiyang
    Peng, Yonggang
    Wei, Wei
    [J]. MATERIALS SCIENCE, ENERGY TECHNOLOGY, AND POWER ENGINEERING I, 2017, 1839