A CLASS OF FROBENIUS-TYPE EULERIAN POLYNOMIALS

被引:9
|
作者
Srivastava, H. M. [1 ,2 ]
Boutiche, M. A. [3 ]
Rahmani, M. [3 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] USTHB, Fac Math, POB 32,El Alia 16111, Algiers, Algeria
关键词
Algorithm; Frobenius-type Eulerian polynomials; tangent numbers; explicit formulas; recurrence relations; Stirling numbers of the first and second kind; Whitney numbers of the second kind; WEIGHTED STIRLING NUMBERS; BERNOULLI; FORMULA; 1ST;
D O I
10.1216/RMJ-2018-48-3-1003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to prove several explicit formulas associated with the Frobenius-type Eulerian polynomials in terms of the weighted Stirling numbers of the second kind. As a consequence, we derive an explicit formula for the tangent numbers of higher order. We also give a recursive method for the calculation of the Frobenius-type Eulerian numbers and polynomials.
引用
收藏
页码:1003 / 1013
页数:11
相关论文
共 50 条
  • [1] Umbral calculus associated with Frobenius-type Eulerian polynomials
    T. Kim
    T. Mansour
    Russian Journal of Mathematical Physics, 2014, 21 : 484 - 493
  • [2] Umbral Calculus Associated with Frobenius-Type Eulerian Polynomials
    Kim, T.
    Mansour, T.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2014, 21 (04) : 484 - 493
  • [3] Multifarious results for q-Hermite-based Frobenius-type Eulerian polynomials
    Khan, Waseem Ahmad
    Khan, Idrees Ahmad
    Acikgoz, Mehmet
    Duran, Ugur
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2020, 26 (02) : 127 - 141
  • [4] Applications and Properties for Bivariate Bell-Based Frobenius-Type Eulerian Polynomials
    Khan, Waseem Ahmad
    Alatawi, Maryam Salem
    Duran, Ugur
    JOURNAL OF FUNCTION SPACES, 2023, 2023
  • [5] A New Class of Laguerre-based Frobenius Type Eulerian Numbers and Polynomials
    Khan, Waseem Ahmad
    Nisar, Kottakkaran Sooppy
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41
  • [6] Apostol type (p, q)-Frobenius–Eulerian polynomials and numbers
    W. A. Khan
    I. A. Khan
    U. Duran
    M. Acikgoz
    Afrika Matematika, 2021, 32 : 115 - 130
  • [7] A Frobenius-type theorem for supersolvable groups
    Wang, CY
    Guo, XY
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1996, 49 (3-4): : 321 - 326
  • [8] Frobenius-type theorems for Lipschitz distributions
    Rampazzo, Franco
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 243 (02) : 270 - 300
  • [9] Representations of Frobenius-type Triangular Matrix Algebras
    Fang LI
    Chang YE
    Acta Mathematica Sinica, 2017, 33 (03) : 341 - 361
  • [10] Apostol type (p, q)-Frobenius-Eulerian polynomials and numbers
    Khan, W. A.
    Khan, I. A.
    Duran, U.
    Acikgoz, M.
    AFRIKA MATEMATIKA, 2021, 32 (1-2) : 115 - 130