Cline's Formula for g-Drazin Inverses in a Ring

被引:7
|
作者
Chen, Huanyin [1 ]
Abdolyousefi, Marjan Sheibani [2 ]
机构
[1] Hangzhou Normal Univ, Dept Math, Hangzhou, Zhejiang, Peoples R China
[2] Womens Univ Semnan Farzanegan, Semnan, Iran
关键词
Drazin inverse; generalized Drazin inverse; spectral property; Banach algebra; LINEAR-OPERATORS RS; COMMON PROPERTIES; PRODUCTS; AC;
D O I
10.2298/FIL1908249C
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that for an associative ring R, if ab has g-Drazin inverse then ba has g-Drazin inverse. In this case, (ba)(d) = b((ab)(d))(2)a. This formula is so-called Cline's formula for g-Drazin inverse, which plays an elementary role in matrix and operator theory. In this paper, we generalize Cline's formula to the wider case. In particular, as applications, we obtain new common spectral properties of bounded linear operators.
引用
收藏
页码:2249 / 2255
页数:7
相关论文
共 50 条
  • [1] Generalized Cline's Formula for g-Drazin Inverse in a Ring
    Chen, Huanyin
    Abdolyousefi, Marjan Sheibani
    [J]. FILOMAT, 2021, 35 (08) : 2573 - 2583
  • [2] Cline's Formula and Jacobson's Lemma for g-Drazin Inverse
    Chen, Huanyin
    Abdolyousefi, Marjan Sheibani
    [J]. FILOMAT, 2021, 35 (15) : 5083 - 5091
  • [3] ON JACOBSON'S LEMMA AND CLINE'S FORMULA FOR DRAZIN INVERSES
    Mosic, Dijana
    [J]. REVISTA DE LA UNION MATEMATICA ARGENTINA, 2020, 61 (02): : 267 - 276
  • [4] G-DRAZIN INVERSES FOR OPERATOR MATRICES
    Chen, Huanyin
    Abdolyousefi, Marjan Sheibani
    [J]. OPERATORS AND MATRICES, 2020, 14 (01): : 23 - 31
  • [5] THE G-DRAZIN INVERSES OF SPECIAL OPERATOR MATRICES
    Chen, Huanyin
    Sheibani, Marjan
    [J]. OPERATORS AND MATRICES, 2021, 15 (01): : 151 - 162
  • [6] A NOTE ON CLINE'S FORMULA FOR TWO SUBCLASSES OF GENERALIZED DRAZIN INVERSES
    Kai Yan
    [J]. Annals of Applied Mathematics, 2020, (02) : 195 - 203
  • [7] NEW EXTENSIONS OF CLINE'S FORMULA FOR GENERALIZED DRAZIN-RIESZ INVERSES
    Tajmouati, Abdelaziz
    Karmouni, Mohammed
    Ahmed, M. B. Mohamed
    [J]. REVISTA DE LA UNION MATEMATICA ARGENTINA, 2019, 60 (02): : 567 - 572
  • [8] On G-Drazin inverses of finite potent endomorphisms and arbitrary square matrices
    Romo, Fernando Pablos
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (12): : 2227 - 2247
  • [9] The g-Drazin inverses of anti-triangular block operator matrices
    Chen, Huanyin
    Sheibani, Marjan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2024, 463
  • [10] Jacobson's lemma and Cline's formula for generalized inverses in a ring with involution
    Shi, Guiqi
    Chen, Jianlong
    Li, Tingting
    Zhou, Mengmeng
    [J]. COMMUNICATIONS IN ALGEBRA, 2020, 48 (09) : 3948 - 3961