NORMAL FAMILIES AND UNIQUENESS THEOREM OF HOLOMORPHIC FUNCTIONS

被引:0
|
作者
Lue, Feng [1 ]
Liu, Kai [2 ]
Yi, Hongxun [3 ]
机构
[1] China Univ Petr, Dept Math, Dongying 257061, Shandong, Peoples R China
[2] Nanchang Univ, Dept Math, Nanchang 330031, Peoples R China
[3] Shandong Univ, Dept Math, Jinan 250100, Peoples R China
关键词
Entire functions; Uniqueness; Nevanlinna theory; Normal family; Differential equation; DERIVATIVES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, we have two purposes. Firstly, we prove two theorems and two corollaries of normal families which improve and generalize some results of Pang and Zalcman [9], Zhang, Sun and Pang [13], Chang and Fang [2]. Secondly, we use the theory of normal families and differential equations to obtain a uniqueness theorem of entire function which is an improvement of Chang and Fang [1].
引用
收藏
页码:217 / 232
页数:16
相关论文
共 50 条
  • [1] A UNIQUENESS THEOREM FOR HOLOMORPHIC FUNCTIONS
    SIDDIQI, JA
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 141 - &
  • [2] A UNIQUENESS THEOREM FOR HOLOMORPHIC FAMILIES OF OPERATORS
    BRUK, VM
    [J]. MATHEMATICAL NOTES, 1993, 53 (3-4) : 353 - 354
  • [3] Normal families of holomorphic functions
    Chang, JM
    Fang, ML
    Zalcman, L
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2004, 48 (01) : 319 - 337
  • [4] ON NORMAL FAMILIES OF HOLOMORPHIC FUNCTIONS
    Dovbush, P. V.
    [J]. MATHEMATICA MONTISNIGRI, 2016, 36 : 5 - 13
  • [5] The normal families of holomorphic functions
    Vignaux, JC
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1939, 209 : 147 - 149
  • [6] RADIAL CLUSTER SET UNIQUENESS THEOREM FOR HOLOMORPHIC FUNCTIONS
    BAGEMIHL, F
    [J]. MONATSHEFTE FUR MATHEMATIK, 1971, 75 (04): : 289 - &
  • [7] A UNIQUENESS THEOREM FOR FUNCTIONS HOLOMORPHIC IN A HALF-PLANE
    HWANG, JS
    [J]. JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1982, 22 (02): : 285 - 292
  • [8] A normal criterion of families of holomorphic functions
    Peiyan Niu
    Yan Xu
    [J]. Analysis and Mathematical Physics, 2021, 11
  • [9] Composite Holomorphic Functions and Normal Families
    Xiao Bing
    Wu Qifeng
    Yuan Wenjun
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [10] NORMAL FAMILIES OF BICOMPLEX HOLOMORPHIC FUNCTIONS
    Charak, K. S.
    Rochon, D.
    Sharma, N.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2009, 17 (03) : 257 - 268