Euler-Kronecker constant;
number field;
algebraic manifold;
finite field;
zeta function;
Laurent series;
the generalized Riemann hypothesis;
Betti number;
D O I:
10.1134/S0001434610010050
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We consider lower bounds for the Euler-Kronecker constant in the case of number fields and upper and lower bounds in the case of algebraic manifolds over a finite field.
机构:
Tullio Levi Civita Univ Padova, Dipartimento Matemat, Via Trieste 63, I-35121 Padua, ItalyTullio Levi Civita Univ Padova, Dipartimento Matemat, Via Trieste 63, I-35121 Padua, Italy