Automation of hyperspectral airborne remote sensing data processing

被引:1
|
作者
Kozoderov, V. V. [1 ]
Egorov, V. D. [2 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
[2] Russian Acad Sci, Inst Numer Math, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
hyperspectral imaging; object recognition; characteristic features of vegetation; VEGETATION; REFLECTANCE; COVER;
D O I
10.1134/S0001433814090102
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
An automated system is proposed for discriminating the spectral radiances registered by the hyperspectral airborne instruments based on average spectra and their interclass variability while distinguishing pixels related to the illuminated and shaded elements of the crown trees for various species and ages. Maps of the ground-based inventory for the selected area of airborne remote sensing are used as prior information. The system automatically forms databases of the selected classes of objects using the contours of these objects drawn on the image under processing. An opportunity to distinguish these classes is demonstrated in the red edge region of the spectra transition from the chlorophyll spectral band to the maximum of the spectral vegetation reflectivity.
引用
收藏
页码:853 / 866
页数:14
相关论文
共 50 条
  • [1] Automation of hyperspectral airborne remote sensing data processing
    V. V. Kozoderov
    V. D. Egorov
    [J]. Izvestiya, Atmospheric and Oceanic Physics, 2014, 50 : 853 - 866
  • [2] Remote Sensing of Soil Moisture Using Airborne Hyperspectral Data
    Finn, Michael P.
    Lewis, Mark
    Bosch, David D.
    Giraldo, Mario
    Yamamoto, Kristina
    Sullivan, Dana G.
    Kincaid, Russell
    [J]. GISCIENCE & REMOTE SENSING, 2011, 48 (04) : 522 - 540
  • [3] Data processing and application of thermal infrared hyperspectral remote sensing
    Xie, Feng
    Yang, Gui
    Liu, Chengyu
    Liu, Zhihui
    Zhang, Changxing
    Shao, Honglan
    Wang, Jianyu
    Cai, Nengbin
    [J]. MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL REMOTE SENSING TECHNOLOGY, TECHNIQUES AND APPLICATIONS VI, 2016, 9880
  • [4] Regional monitoring of forest vegetation using airborne hyperspectral remote sensing data
    Dmitriev, Egor V.
    Kozoderov, Vladimir V.
    Kondranin, Timophey V.
    Sokolov, Anton A.
    [J]. MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL REMOTE SENSING TECHNOLOGY, TECHNIQUES AND APPLICATIONS V, 2014, 9263
  • [5] Spectral requirements on airborne hyperspectral remote sensing data for wheat disease detection
    Mewes, Thorsten
    Franke, Jonas
    Menz, Gunter
    [J]. PRECISION AGRICULTURE, 2011, 12 (06) : 795 - 812
  • [6] Construction and Data Analysis of Test-bed by Hyperspectral Airborne Remote Sensing
    Chang, Anjin
    Kim, Yongil
    Choi, Seokkeun
    Han, Dongyeob
    Choi, Jaewan
    Kim, Yongmin
    Han, Youkyung
    Park, Honglyun
    Wang, Biao
    Lim, Heechang
    [J]. KOREAN JOURNAL OF REMOTE SENSING, 2013, 29 (02) : 161 - 172
  • [7] Airborne hyperspectral remote sensing image data is used for rice precise classification
    Zhang, Feng
    Xiong, Zhen
    Kou, Ning
    [J]. Wuhan Ligong Daxue Xuebao/Journal of Wuhan University of Technology, 2002, 24 (10):
  • [8] Spectral requirements on airborne hyperspectral remote sensing data for wheat disease detection
    Thorsten Mewes
    Jonas Franke
    Gunter Menz
    [J]. Precision Agriculture, 2011, 12
  • [9] Processing of hyperspectral remote sensing image
    Li, DR
    Zhang, LP
    [J]. INTERNATIONAL SYMPOSIUM ON MULTISPECTRAL IMAGE PROCESSING, 1998, 3545 : 8 - 14
  • [10] Tensor Decompositions for Hyperspectral Data Processing in Remote Sensing: A comprehensive review
    Wang, Minghua
    Hong, Danfeng
    Han, Zhu
    Li, Jiaxin
    Yao, Jing
    Gao, Lianru
    Zhang, Bing
    Chanussot, Jocelyn
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2023, 11 (01) : 26 - 72