N-Lusin property in metric measure spaces: A new sufficient condition

被引:1
|
作者
Garriga, Marcela [1 ]
Ochoa, Pablo [2 ]
机构
[1] Univ Nacl Cuyo, RA-5500 Mendoza, Argentina
[2] Univ Nacl Cuyo, CONICET, RA-5500 Mendoza, Argentina
关键词
Abstract differentiation theory; area formula; N-Lusin condition; metric measure spaces; DIFFERENTIABILITY; MAPPINGS;
D O I
10.1515/forum-2018-0016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we are concerned with the study of the N-Lusin property in metric measure spaces. A map satisfies that property if sets of measure zero are mapped to sets of measure zero. We prove a new sufficient condition for the N-Lusin property using a weak and pointwise Lipschitz-type estimate. Relations with approximate differentiability in metric measure spaces and other sufficient conditions for the N-Lusin property will be provided.
引用
收藏
页码:1475 / 1486
页数:12
相关论文
共 50 条