Minocycline relieves myocardial ischemia-reperfusion injury in rats by inhibiting inflammation, oxidative stress and apoptosis

被引:7
|
作者
Chen, L-Q [1 ]
Wang, W-S [1 ]
Li, S-Q [1 ]
Liu, J-H [1 ]
机构
[1] Hunan Univ Chinese Med, Dept Cardiol, Hosp 1, Changsha, Peoples R China
关键词
Minocycline; Myocardial ischemia-reperfusion injury Inflammation; Oxidative stress; Apoptosis; ISCHEMIA/REPERFUSION;
D O I
暂无
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
OBJECTIVE: Myocardial ischemia-reperfusion (VR) injury (MIRI) is an important cause of irreversible injury to the myocardium in patients with acute myocardial infarction. The purpose of this study was to investigate the effects of minocycline (MC) on inflammation, oxidative stress and apoptosis of myocardial tissues. MATERIALS AND METHODS: We used rats to establish MIRI model by ligating coronary arteries. The structure and function of rat myocardium were determined by 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining, hematoxylin-eosin (HE) staining and echocardiography. In addition, we detected the expression of inflammatory factors, antioxidant enzymes and apoptosis-related molecules in rats by enzyme-linked immunosorbent assay (ELISA), immunohistochemical (IHC) staining and reverse transcription-polymerase chain reaction (RTPCR) to determine the effect of MC on inflammation, oxidative stress and apoptosis in VR rats. Finally, we studied the effect of MC stimulation on the viability of rat cardiomyocytes (H9c2 cells) in vitro. RESULTS: After VR. the heart function of rats decreased. and the structure of myocardium was destroyed. The levels of inflammation and oxidative stress in VR rats also increased significantly, manifested by increased inflammatory factors and decreased antioxidant enzymes in serum and myocardial tissue. After treatment of VR rats with MC, the structure and function of rat myocardium improved significantly, and MC reduced inflammation and oxidative stress levels in rats. thus inhibiting the apoptosis of cardiomyocytes. MC also improved the viability of H9c2 cells in vitro. CONCLUSIONS: MC reduced inflammation and oxidative stress levels in MIRI rat model or H9c2 cells. thus inhibiting cardiomyocyte apoptosis. Therefore. MC has potential application prospects for the treatment of MIRI.
引用
收藏
页码:3001 / 3009
页数:9
相关论文
共 50 条
  • [1] Phycocyanin relieves myocardial ischemia-reperfusion injury in rats by inhibiting oxidative stress
    Xu, Hai
    Zhang, Xiwen
    Shi, Yafei
    Yu, Kun
    Jiang, Yicheng
    TROPICAL JOURNAL OF PHARMACEUTICAL RESEARCH, 2022, 21 (09) : 1923 - 1930
  • [2] Glycine attenuates myocardial ischemia-reperfusion injury by inhibiting myocardial apoptosis in rats
    Xiaozheng Zhonga
    bState Key Laboratory of Reproductive Medicine
    The Journal of Biomedical Research, 2012, (05) : 346 - 354
  • [3] Glycine attenuates myocardial ischemia-reperfusion injury by inhibiting myocardial apoptosis in rats
    Zhong, Xiaozheng
    Li, Xiaoyu
    Qian, Lingling
    Xu, Yiming
    Lu, Yan
    Zhang, Jing
    Li, Nan
    Zhu, Xudong
    Ben, Jingjing
    Yang, Qing
    Chen, Qi
    JOURNAL OF BIOMEDICAL RESEARCH, 2012, 26 (05): : 346 - 354
  • [4] Dexmedetomidine attenuates myocardial ischemia-reperfusion injury in hyperlipidemic rats by inhibiting inflammation, oxidative stress and NF-κB
    Gao, Weiwei
    Du, Liang
    Li, Nan
    Li, Yating
    Wu, Jinfang
    Zhang, Ze
    Chen, Huan
    CHEMICAL BIOLOGY & DRUG DESIGN, 2023, 102 (05) : 1176 - 1185
  • [5] Hyperoside Attenuates Hepatic Ischemia-Reperfusion Injury by Suppressing Oxidative Stress and Inhibiting Apoptosis in Rats
    Shi, Yaoping
    Qiu, Xiaoxia
    Dai, Mengjun
    Zhang, Xuebin
    Jin, Guangxin
    TRANSPLANTATION PROCEEDINGS, 2019, 51 (06) : 2051 - 2059
  • [6] SAFINAMIDE AMELIORATES CEREBRAL ISCHEMIA-REPERFUSION INJURY IN RATS BY ATTENUATING OXIDATIVE STRESS, INFLAMMATION AND APOPTOSIS
    Wasan, H.
    Singh, D.
    Sharma, U.
    Kh, R.
    INTERNATIONAL JOURNAL OF STROKE, 2021, 16 (2_SUPPL) : 27 - 27
  • [7] Propofol Attenuates Hepatic Ischemia-Reperfusion Injury in Rats by Reducing Inflammation, Oxidative Stress and Apoptosis
    Wei, Qingqi
    Hu, Xiaofeng
    Zhang, Dan
    LATIN AMERICAN JOURNAL OF PHARMACY, 2020, 39 (05): : 1040 - 1046
  • [8] Osthole attenuates myocardial ischemia/reperfusion injury in rats by inhibiting apoptosis and inflammation
    Wu, Jingguo
    Yang, Yang
    Xun, Nan
    Zeng, Lijin
    Li, Zhenyu
    Yang, Wen
    Liang, Yanbing
    Ma, Zhongfu
    Tang, Hao
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2018, 10 (04): : 1109 - 1116
  • [9] Hyperoside protects against cerebral ischemia-reperfusion injury by alleviating oxidative stress, inflammation and apoptosis in rats
    He, Jinting
    Li, Haiqi
    Li, Gaofeng
    Yang, Le
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2019, 33 (01) : 798 - 806
  • [10] Adalimumab mitigates ovarian ischemia-reperfusion injury in rats by regulating oxidative stress, apoptosis and resolution of inflammation
    Beyazit, Fatma
    Buyuk, Basak
    Turkon, Hakan
    Elmas, Sait
    Uzun, Metehan
    JOURNAL OF OBSTETRICS AND GYNAECOLOGY RESEARCH, 2019, 45 (02) : 358 - 367