Categoricity from one successor cardinal in tame abstract elementary classes

被引:39
|
作者
Grossberg, Rami [1 ]
Vandieren, Monica
机构
[1] Carnegie Mellon Univ, Dept Math, Pittsburgh, PA 15213 USA
[2] Robert Morris Univ, Dept Math, Moon Township, PA 15108 USA
关键词
model theory; classification theory; abstract elementary classes; stability; categoricity;
D O I
10.1142/S0219061306000554
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that from categoricity in lambda(+) we can get categoricity in all cardinals >= lambda(+) in a chi-tame abstract elementary classe K which has arbitrarily large models and satisfies the amalgamation and joint embedding properties, provided lambda > LS(K) and lambda >= chi. For the missing case when lambda = LS(K), we prove that K is totally categorical provided that K is categorical in LS(K) and LS(K)(+).
引用
收藏
页码:181 / 201
页数:21
相关论文
共 50 条