A Semantic Encoding Out-of-Distribution Classifier for Generalized Zero-Shot Learning

被引:4
|
作者
Ding, Jiayu [1 ]
Hu, Xiao [2 ]
Zhong, Xiaorong [1 ]
机构
[1] Guangzhou Univerd, Sch Elect & Commun Engn, Guangzhou 510006, Peoples R China
[2] Guangzhou Univ, Sch Mech & Elect Engn, Guangzhou 510006, Peoples R China
关键词
Semantics; Visualization; Encoding; Training; Task analysis; Manifolds; Benchmark testing; Generalized zero-shot learning; out-of-distribution classifier; semantically consistent mapping;
D O I
10.1109/LSP.2021.3092227
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Generalized zero-shot learning (GZSL) poses a challenging problem in that it aims to recognize both seen classes that have appeared in the training stage and unseen classes that have not appeared during training. By utilizing a gating mechanism as the binary classifier, gating methods can decompose GZSL into a conventional ZSL problem and a supervision learning task, thereby leading to outstanding performance by GZSL. However, unseen classes contain many confusing visual samples that distribute too close to the seen class boundaries and are prone to misclassification. To solve this problem, we propose a novel semantic encoding out-of-distribution classifier (SE-OOD) for GZSL. Our method first utilizes semantically consistent mapping to project all the visual samples to their corresponding semantic attributes. Then, both the projected visual samples and original semantic attributes are encoded to their latent representations for distribution alignment. After separating the unseen samples from seen samples in the learned latent space, two domain classifiers are adopted to perform ZSL and supervised classification tasks. Extensive experiments are conducted on four benchmarks, and the results show that our proposed SE-OOD can outperform the state-of-the-arts by a large margin.
引用
收藏
页码:1395 / 1399
页数:5
相关论文
共 50 条
  • [1] Out-of-Distribution Detection for Generalized Zero-Shot Action Recognition
    Mandal, Devraj
    Narayan, Sanath
    Dwivedi, Saikumar
    Gupta, Vikram
    Ahmed, Shuaib
    Khan, Fahad Shahbaz
    Shao, Ling
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 9977 - 9985
  • [2] Generative Model with Semantic Embedding and Integrated Classifier for Generalized Zero-Shot Learning
    Pambala, Ayyappa Kumar
    Dutta, Titir
    Biswas, Soma
    2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 1226 - 1235
  • [3] Discriminative comparison classifier for generalized zero-shot learning
    Hou, Mingzhen
    Xia, Wei
    Zhang, Xiangdong
    Gao, Quanxue
    NEUROCOMPUTING, 2020, 414 (414) : 10 - 17
  • [4] Semantic Contrastive Embedding for Generalized Zero-Shot Learning
    Zongyan Han
    Zhenyong Fu
    Shuo Chen
    Jian Yang
    International Journal of Computer Vision, 2022, 130 : 2606 - 2622
  • [5] Semantic Feature Extraction for Generalized Zero-Shot Learning
    Kim, Junhan
    Shim, Kyuhong
    Shim, Byonghyo
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 1166 - 1173
  • [6] Semantic Contrastive Embedding for Generalized Zero-Shot Learning
    Han, Zongyan
    Fu, Zhenyong
    Chen, Shuo
    Yang, Jian
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (11) : 2606 - 2622
  • [7] TAG: Text Prompt Augmentation for Zero-Shot Out-of-Distribution Detection
    Liu, Xixi
    Zache, Christopher
    COMPUTER VISION - ECCV 2024, PT LXXIII, 2025, 15131 : 364 - 380
  • [8] Semantic Autoencoder for Zero-Shot Learning
    Kodirov, Elyor
    Xiang, Tao
    Gong, Shaogang
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 4447 - 4456
  • [9] Learning semantic ambiguities for zero-shot learning
    Hanouti, Celina
    Le Borgne, Herve
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (26) : 40745 - 40759
  • [10] Learning semantic ambiguities for zero-shot learning
    Celina Hanouti
    Hervé Le Borgne
    Multimedia Tools and Applications, 2023, 82 : 40745 - 40759