On-Demand Big Data Analysis in Digital Repositories: A Lightweight Approach

被引:2
|
作者
Xie, Zhiwu [1 ]
Chen, Yinlin [1 ]
Jiang, Tingting [1 ]
Speer, Julie [1 ]
Walters, Tyler [1 ]
Tarazaga, Pablo A. [2 ]
Kasarda, Mary [2 ]
机构
[1] Virginia Polytech Inst & State Univ, Univ Lib, Blacksburg, VA 24061 USA
[2] Virginia Polytech Inst & State Univ, Dept Mech Engn, Blacksburg, VA 24061 USA
关键词
Big data; Data management; Docker; Scholarly digital divide; Use and reuse driven approach;
D O I
10.1007/978-3-319-27974-9_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe a use and reuse driven digital repository integrated with lightweight data analysis capabilities provided by the Docker framework. Using building sensor data collected from the Virginia Tech Goodwin Hall Living Laboratory, we perform evaluations using Amazon EC2 and Container Service with a Fedora 4 repository backed with storage in Amazon S3. The results confirm the viability and benefits of this approach.
引用
收藏
页码:274 / 277
页数:4
相关论文
共 50 条
  • [1] On-Demand Processing for Remote Sensing Big Data Analysis
    Huang, Zhenchun
    Zhong, Anrun
    Li, Guoqing
    [J]. 2017 15TH IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING WITH APPLICATIONS AND 2017 16TH IEEE INTERNATIONAL CONFERENCE ON UBIQUITOUS COMPUTING AND COMMUNICATIONS (ISPA/IUCC 2017), 2017, : 1241 - 1245
  • [2] On-demand big data integration: A hybrid ETL approach for reproducible scientific research
    Kathiravelu, Pradeeban
    Sharma, Ashish
    Galhardas, Helena
    Van Roy, Peter
    Veiga, Luis
    [J]. DISTRIBUTED AND PARALLEL DATABASES, 2019, 37 (02) : 273 - 295
  • [3] On-demand big data integrationA hybrid ETL approach for reproducible scientific research
    Pradeeban Kathiravelu
    Ashish Sharma
    Helena Galhardas
    Peter Van Roy
    Luís Veiga
    [J]. Distributed and Parallel Databases, 2019, 37 : 273 - 295
  • [4] Hybrid Big Data Warehouse for On-demand decision needs
    El Houari, Meryeme
    Rhanoui, Maryem
    El Asri, Bouchra
    [J]. PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON ELECTRICAL AND INFORMATION TECHNOLOGIES (ICEIT 2017), 2017,
  • [5] A lazy data request approach for on-demand data broadcasting
    Ni, WG
    Fang, Q
    Vrbsky, SV
    [J]. 23RD INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS WORKSHOPS, 2003, : 790 - 796
  • [6] A Configurable, Big Data System for On-Demand Healthcare Cost Prediction
    Ramamurthy, Karthikeyan Natesan
    Wei, Dennis
    Ray, Emily
    Singh, Moninder
    Iyengar, Vijay
    Katz-Rogozhnikov, Dmitriy
    Yang, Jingwei
    Tran, Kevin N.
    Yuen-Reed, Gigi
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 1524 - 1533
  • [7] Data Infrastructure for Remote Sensing Big Data: Integration, Management and On-Demand Service
    Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing
    100094, China
    不详
    100084, China
    [J]. Jisuanji Yanjiu yu Fazhan, 2 (267-283):
  • [8] Managing and Optimizing Big Data Workloads for On-Demand User Centric Reports
    Baicoianu, Alexandra
    Scheianu, Ion Valentin
    [J]. BIG DATA AND COGNITIVE COMPUTING, 2023, 7 (02)
  • [9] AN AUTOMATED APPROACH FOR DIGITAL FORENSIC ANALYSIS OF HETEROGENEOUS BIG DATA
    Mohammed, Hussam
    Clarke, Nathan
    Li, Fudong
    [J]. JOURNAL OF DIGITAL FORENSICS SECURITY AND LAW, 2016, 11 (02) : 137 - 152
  • [10] Digital Soil Map data in an on-line, on-demand world
    Wilson, P. L.
    Jacquier, D.
    Simons, B. A.
    [J]. DIGITAL SOIL ASSESSMENTS AND BEYOND, 2012, : 293 - 297