Boundary blow-up solutions for a cooperative system of quasilinear equation

被引:8
|
作者
Wang, Ying [1 ]
Wang, Mingxin [2 ]
机构
[1] SE Univ, Dept Math, Nanjing 210018, Peoples R China
[2] Harbin Inst Technol, Nat Sci Res Ctr, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
Boundary blow-up; Cooperative system; p-Laplacian; Singular weights; ASYMPTOTIC-BEHAVIOR; ELLIPTIC SYSTEM; REGULARITY; UNIQUENESS; EXISTENCE;
D O I
10.1016/j.jmaa.2010.03.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence, uniqueness and boundary behavior of positive boundary blow-up solutions to the quasilinear elliptic system {Delta(p)u = w(x)u(a)/v(b) in Omega, Delta(p)v = lambda(x)v(c)/u(e) in Omega, u = v = infinity on partial derivative Omega in a smooth bounded domain Omega subset of R-N. The operator Delta(p) stands for the p-Laplacian defined by Delta(p)u = div{vertical bar del u vertical bar(p-2)del u), p > 1, the exponents a, b, c, e verify a, c > p - 1, b, e > 0, and the weight functions w(x), lambda(x) are positive and may blow up on the boundary partial derivative Omega. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:736 / 744
页数:9
相关论文
共 50 条
  • [1] Existence of boundary blow-up solutions for a quasilinear elliptic equation
    Wu M.
    Yang Z.
    [J]. Journal of Applied Mathematics and Computing, 2008, 28 (1-2) : 59 - 68
  • [2] Blow-up of solutions of a quasilinear parabolic equation
    Suzuki, Ryuichi
    Umeda, Noriaki
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (02) : 425 - 448
  • [3] BLOW-UP BOUNDARY SOLUTIONS FOR QUASILINEAR ANISOTROPIC EQUATIONS
    Amzoiu, Manuel
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2010, 18 (01): : 35 - 47
  • [4] Boundary blow-up solutions of cooperative systems
    Davila, Juan
    Dupaigne, Louis
    Goubet, Olivier
    Martinez, Salome
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (05): : 1767 - 1791
  • [5] Boundary blow-up solutions for a class of quasilinear elliptic equations
    Miao, Qing
    Yang, Zuodong
    [J]. APPLICABLE ANALYSIS, 2010, 89 (12) : 1893 - 1905
  • [6] Boundary blow-up solutions and their applications in quasilinear elliptic equations
    Yihong Du
    Zongming Guo
    [J]. Journal d’Analyse Mathématique, 2003, 89 : 277 - 302
  • [7] GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS FOR A QUASILINEAR PARABOLIC EQUATION WITH ABSORPTION AND NONLINEAR BOUNDARY CONDITION
    Ahmed, Iftikhar
    Mu, Chunlai
    Zheng, Pan
    [J]. INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2014, 5 (02): : 147 - 153
  • [8] Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition
    Guo, Jong-Shenq
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2007, 18 (01) : 71 - 84
  • [9] Boundary blow-up solutions for a cooperative system involving the p-Laplacian
    Chen, Li
    Chen, Yujuan
    Luo, Dang
    [J]. ANNALES POLONICI MATHEMATICI, 2013, 109 (03) : 297 - 310
  • [10] Blow-Up of Sign-Changing Solutions of a Quasilinear Heat Equation
    Pokhozhaev, S. I.
    [J]. DIFFERENTIAL EQUATIONS, 2011, 47 (03) : 373 - 381