Detecting Anomalous Vessel Dynamics with Functional Data Analysis

被引:2
|
作者
Huang, He [1 ]
Qiu, Kaiyue [1 ]
Jeong, Myeong-Hun [2 ]
Jeon, Seung Bae [2 ]
Lee, Woo Pyeong [3 ]
机构
[1] Beijing Univ Civil Engn & Architecture, Sch Geomat & Urban Spatial Informat, Beijing, Peoples R China
[2] Chosun Univ, Dept Civil Engn, Gwangju, South Korea
[3] ForceWave Co Ltd, Gyeonggi, South Korea
基金
新加坡国家研究基金会;
关键词
AIS; maritime safety; functional data analysis; outlier detection;
D O I
10.2112/SI91-082.1
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Advances in location-acquisition technology open up new areas of applications in maritime monitoring and security. Automatic identification system (AIS) data provide dynamic information on vessel movements. This research proposes a new method for detecting anomalous vessel dynamics using functional data analysis. Empirical investigations of this approach demonstrate the effective detection of outlier flows in terms of ship traffic volume. However, alternative methods such as the 3-sigma rule and the MAD-Median rule fail to detect anomalous vessel traffic. This investigation suggests that the method proposed can improve the safety and operation of ship-to-shore vessel traffic management.
引用
收藏
页码:406 / 410
页数:5
相关论文
共 50 条
  • [1] Learning Motion Patterns in AIS Data and Detecting Anomalous Vessel Behavior
    Kullberg, Anton
    Skog, Isaac
    Hendeby, Gustaf
    2021 IEEE 24TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2021, : 612 - 619
  • [2] DETECTING ANOMALOUS LOAD DATA
    USORO, PB
    SCHICK, IC
    RUANE, MF
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1987, 2 (01) : 129 - 133
  • [3] Detecting groups of coherent voxels in functional MRI data using spectral analysis and replicator dynamics
    Mueller, Karsten
    Neumann, Jane
    Grigutsch, Maren
    von Cramon, D. Yves
    Lohmann, Gabriele
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2007, 26 (06) : 1642 - 1650
  • [4] Empirical Dynamics and Functional Data Analysis
    Mueller, Hans-Georg
    COMPSTAT'2010: 19TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STATISTICS, 2010, : 209 - 218
  • [5] Detecting anomalous energy consumption using contextual analysis of smart meter data
    Ankur Sial
    Amarjeet Singh
    Aniket Mahanti
    Wireless Networks, 2021, 27 : 4275 - 4292
  • [6] Detecting anomalous energy consumption using contextual analysis of smart meter data
    Sial, Ankur
    Singh, Amarjeet
    Mahanti, Aniket
    WIRELESS NETWORKS, 2021, 27 (06) : 4275 - 4292
  • [7] Detecting Anomalous Behaviour Using Heterogeneous Data
    Ali, Azliza Mohd
    Angelov, Plamen
    Gu, Xiaowei
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, 2017, 513 : 253 - 273
  • [8] Detecting Functional States of the Rat Brain with Topological Data Analysis
    Ju, Nianqiao
    Volic, Ismar
    Wiest, Michael
    ADVANCED TECHNOLOGIES, SYSTEMS, AND APPLICATIONS III, VOL 1, 2019, 59 : 3 - 12
  • [9] Detecting Functional Dynamics in Proteins with Comparative Perturbed-ensembles Analysis
    Yao, Xin-Qiu
    Hamelberg, Donald
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 303A - 303A
  • [10] Detecting Functional Dynamics in Proteins with Comparative Perturbed-Ensembles Analysis
    Yao, Xin-Qiu
    Hamelberg, Donald
    ACCOUNTS OF CHEMICAL RESEARCH, 2019, 52 (12) : 3455 - 3464