Experimental study of generalized synchronization of a time-delay chaotic system

被引:4
|
作者
Chen Ju-Fang [1 ,2 ]
Tian Xiao-Jian [1 ]
Shan Jiang-Dong [1 ]
机构
[1] Jilin Univ, Coll Elect Sci & Engn, Changchun 130012, Peoples R China
[2] NE Normal Univ, Coll Phys, Changchun 130024, Peoples R China
基金
中国国家自然科学基金;
关键词
tune-delay chaotic system; generalized synchronization; LC filter; circuit experiment; ATTRACTORS;
D O I
10.7498/aps.59.2281
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A two-dimensional time-delay chaotic system is designed and realized in an electronic circuit based on its dynamical behavior. Then a generalized synchronization chaotic system is designed by linear transformation method. The generalized synchronization condition is obtained by in analysis, and generalized synchronization is realized in an electronic circuit. The results of numerical calculation conform the exactness and validity of theoretical analysis and circuit design.
引用
收藏
页码:2281 / 2288
页数:8
相关论文
共 18 条
  • [1] SYNCHRONIZING CHAOTIC CIRCUITS
    CARROLL, TL
    PECORA, LM
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04): : 453 - 456
  • [2] Impulsive stabilization and synchronization of a class of chaotic delay systems
    Li, CD
    Liao, XF
    Yang, XF
    Huang, TW
    [J]. CHAOS, 2005, 15 (04)
  • [3] Linear and nonlinear generalized synchronization of a class of chaotic systems by using a single driving variable
    Li Jian-Fen
    Li Nong
    Li Yu-Ping
    Gan Yi
    [J]. ACTA PHYSICA SINICA, 2009, 58 (02) : 779 - 784
  • [4] A family of multi-scroll chaotic attractors and its circuit design
    Luo Xiao-Hua
    Li Hua-Qing
    Dai Xiang-Guang
    [J]. ACTA PHYSICA SINICA, 2008, 57 (12) : 7511 - 7516
  • [5] OSCILLATION AND CHAOS IN PHYSIOLOGICAL CONTROL-SYSTEMS
    MACKEY, MC
    GLASS, L
    [J]. SCIENCE, 1977, 197 (4300) : 287 - 288
  • [6] Synchronizing hyperchaos with a scalar transmitted signal
    Peng, JH
    Ding, EJ
    Ding, M
    Yang, W
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (06) : 904 - 907
  • [7] Synchronization of coupled time-delay systems: Analytical estimations
    Pyragas, K
    [J]. PHYSICAL REVIEW E, 1998, 58 (03) : 3067 - 3071
  • [8] Delayed feedback control of the Lorenz system: An analytical treatment at a subcritical Hopf bifurcation
    Pyragas, V
    Pyragas, K
    [J]. PHYSICAL REVIEW E, 2006, 73 (03):
  • [9] Phase synchronization of chaotic oscillators
    Rosenblum, MG
    Pikovsky, AS
    Kurths, J
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (11) : 1804 - 1807
  • [10] Ruan SG, 2001, IMA J MATH APPL MED, V18, P41