A quantitative isoperimetric inequality on the sphere

被引:13
|
作者
Boegelein, Verena [1 ]
Duzaar, Frank [2 ]
Fusco, Nicola [3 ]
机构
[1] Univ Salzburg, Fachbereich Math, Hellbrunner Str 34, A-5020 Salzburg, Austria
[2] Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[3] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Naples, Italy
关键词
Isoperimetric inequality; stability; sphere; REGULARITY; SURFACES; DEFICIT;
D O I
10.1515/acv-2015-0042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove a quantitative version of the isoperimetric inequality on the sphere with a constant independent of the volume of the set E.
引用
收藏
页码:223 / 265
页数:43
相关论文
共 50 条
  • [1] The isoperimetric inequality on the sphere
    Rado, T
    AMERICAN JOURNAL OF MATHEMATICS, 1935, 57 : 765 - 770
  • [2] The isoperimetric inequality for convex subsets of the sphere
    Azad, Farhan
    Beck, Thomas
    Lokaj, Karolina
    INVOLVE, A JOURNAL OF MATHEMATICS, 2023, 16 (02): : 343 - 364
  • [3] Isoperimetric inequality for the second eigenvalue of a sphere
    Nadirashvili, N
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2002, 61 (02) : 335 - 340
  • [4] AN ISOPERIMETRIC INEQUALITY FOR LAPLACE EIGENVALUES ON THE SPHERE
    Karpukhin, Mikhail
    Nadirashvili, Nikolai
    Penskoi, Alexei, V
    Polterovich, Iosif
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2021, 118 (02) : 313 - 333
  • [5] ON THE QUANTITATIVE ISOPERIMETRIC INEQUALITY IN THE PLANE
    Bianchini, Chiara
    Croce, Gisella
    Henrot, Antoine
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (02) : 517 - 549
  • [6] The sharp quantitative isoperimetric inequality
    Fusco, N.
    Maggi, F.
    Pratelli, A.
    ANNALS OF MATHEMATICS, 2008, 168 (03) : 941 - 980
  • [7] Quantitative magnetic isoperimetric inequality
    Ghanta, Rohan
    Junge, Lukas
    Morin, Leo
    JOURNAL OF SPECTRAL THEORY, 2024, 14 (01) : 185 - 205
  • [8] The Riemannian quantitative isoperimetric inequality
    Chodosh, Otis
    Engelstein, Max
    Spolaor, Luca
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2023, 25 (05) : 1711 - 1741
  • [9] GENERALIZATION OF ISOPERIMETRIC INEQUALITY ON 2-SPHERE
    WEINER, JL
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 24 (03) : 243 - 248
  • [10] A strong form of the quantitative isoperimetric inequality
    Fusco, Nicola
    Julin, Vesa
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 50 (3-4) : 925 - 937