Identification of geographical origin and different parts of Wolfiporia cocos from Yunnan in China using PLS-DA and ResNet based on FT-NIR
被引:15
|
作者:
Li, Lian
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Acad Agr Sci, Med Plants Res Inst, Kunming 650200, Yunnan, Peoples R China
Yunnan Univ Chinese Med, Coll Tradit Chinese Med, Kunming, Yunnan, Peoples R ChinaYunnan Acad Agr Sci, Med Plants Res Inst, Kunming 650200, Yunnan, Peoples R China
Li, Lian
[1
,2
]
Zuo, Zhi-Tian
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Acad Agr Sci, Med Plants Res Inst, Kunming 650200, Yunnan, Peoples R ChinaYunnan Acad Agr Sci, Med Plants Res Inst, Kunming 650200, Yunnan, Peoples R China
Zuo, Zhi-Tian
[1
]
Wang, Yuan-Zhong
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Acad Agr Sci, Med Plants Res Inst, Kunming 650200, Yunnan, Peoples R ChinaYunnan Acad Agr Sci, Med Plants Res Inst, Kunming 650200, Yunnan, Peoples R China
Wang, Yuan-Zhong
[1
]
机构:
[1] Yunnan Acad Agr Sci, Med Plants Res Inst, Kunming 650200, Yunnan, Peoples R China
[2] Yunnan Univ Chinese Med, Coll Tradit Chinese Med, Kunming, Yunnan, Peoples R China
Introduction Wolfiporia cocos, as a kind of medicine food homologous fungus, is well-known and widely used in the world. Therefore, quality and safety have received worldwide attention, and there is a trend to identify the geographic origin of herbs with artificial intelligence technology. Objective This research aimed to identify the geographical traceability for different parts of W. cocos. Methods The exploratory analysis is executed by two multivariate statistical analysis methods. The two-dimensional correlation spectroscopy (2DCOS) images combined with residual convolutional neural network (ResNet) and partial least square discriminant analysis (PLS-DA) models were established to identify the different parts and regions of W. cocos. We compared and analysed 2DCOS images with different fingerprint bands including full band, 8900-6850 cm(-1), 6300-5150 cm(-1) and 4450-4050 cm(-1) of original spectra and the second-order derivative (SD) spectra preprocessed. Results From all results: the exploratory analysis results showed that t-distributed stochastic neighbour embedding was better than principal component analysis. The synchronous SD 2DCOS is more suitable for the identification and analysis of complex mixed systems for the small-band for Poria and Poriae cutis. Both models of PLS-DA and ResNet could successfully identify the geographical traceability of different parts based on different bands. The 10% external verification set of the ResNet model based on synchronous 2DCOS can be accurately identified. Conclusion Therefore, the methods could be applied for the identification of geographical origins of this fungus, which may provide technical support for quality evaluation.
机构:
Yunnan Acad Agr Sci, Med Plants Res Inst, Kunming, Peoples R China
Yunnan Univ Chinese Med, Coll Tradit Chinese Med, Kunming, Peoples R ChinaYunnan Acad Agr Sci, Med Plants Res Inst, Kunming, Peoples R China
Zhang, YanYing
Shen, Tao
论文数: 0引用数: 0
h-index: 0
机构:
Yuxi Normal Univ, Coll Chem Biol & Environm, Yuxi, Peoples R ChinaYunnan Acad Agr Sci, Med Plants Res Inst, Kunming, Peoples R China
Shen, Tao
Zuo, ZhiTian
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Acad Agr Sci, Med Plants Res Inst, Kunming, Peoples R ChinaYunnan Acad Agr Sci, Med Plants Res Inst, Kunming, Peoples R China
Zuo, ZhiTian
Wang, YuanZhong
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Acad Agr Sci, Med Plants Res Inst, Kunming, Peoples R China
Yunnan Univ Chinese Med, Coll Tradit Chinese Med, Kunming, Peoples R ChinaYunnan Acad Agr Sci, Med Plants Res Inst, Kunming, Peoples R China
机构:
Chinese Acad Fishery Sci, Yellow Sea Fisheries Res Inst, Qingdao 266071, Peoples R ChinaChinese Acad Fishery Sci, Yellow Sea Fisheries Res Inst, Qingdao 266071, Peoples R China
Sun, Yong
Liu, Nan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Fishery Sci, Yellow Sea Fisheries Res Inst, Qingdao 266071, Peoples R ChinaChinese Acad Fishery Sci, Yellow Sea Fisheries Res Inst, Qingdao 266071, Peoples R China
Liu, Nan
Kang, Xuming
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Fishery Sci, Yellow Sea Fisheries Res Inst, Qingdao 266071, Peoples R ChinaChinese Acad Fishery Sci, Yellow Sea Fisheries Res Inst, Qingdao 266071, Peoples R China
Kang, Xuming
Zhao, Yanfang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Fishery Sci, Yellow Sea Fisheries Res Inst, Qingdao 266071, Peoples R ChinaChinese Acad Fishery Sci, Yellow Sea Fisheries Res Inst, Qingdao 266071, Peoples R China
Zhao, Yanfang
Cao, Rong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Fishery Sci, Yellow Sea Fisheries Res Inst, Qingdao 266071, Peoples R ChinaChinese Acad Fishery Sci, Yellow Sea Fisheries Res Inst, Qingdao 266071, Peoples R China
Cao, Rong
Ning, Jinsong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Fishery Sci, Yellow Sea Fisheries Res Inst, Qingdao 266071, Peoples R ChinaChinese Acad Fishery Sci, Yellow Sea Fisheries Res Inst, Qingdao 266071, Peoples R China
Ning, Jinsong
Ding, Haiyan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Fishery Sci, Yellow Sea Fisheries Res Inst, Qingdao 266071, Peoples R ChinaChinese Acad Fishery Sci, Yellow Sea Fisheries Res Inst, Qingdao 266071, Peoples R China
Ding, Haiyan
Sheng, Xiaofeng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Fishery Sci, Yellow Sea Fisheries Res Inst, Qingdao 266071, Peoples R ChinaChinese Acad Fishery Sci, Yellow Sea Fisheries Res Inst, Qingdao 266071, Peoples R China
Sheng, Xiaofeng
Zhou, Deqing
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Fishery Sci, Yellow Sea Fisheries Res Inst, Qingdao 266071, Peoples R ChinaChinese Acad Fishery Sci, Yellow Sea Fisheries Res Inst, Qingdao 266071, Peoples R China
机构:
Yunnan Univ Chinese Med, Coll Tradit Chinese Med, Kunming 650500, Yunnan, Peoples R China
Yunnan Acad Agr Sci, Med Plants Res Inst, Kunming 650200, Yunnan, Peoples R ChinaYunnan Univ Chinese Med, Coll Tradit Chinese Med, Kunming 650500, Yunnan, Peoples R China
Li, Lian
Zhao, YanLi
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Acad Agr Sci, Med Plants Res Inst, Kunming 650200, Yunnan, Peoples R ChinaYunnan Univ Chinese Med, Coll Tradit Chinese Med, Kunming 650500, Yunnan, Peoples R China
Zhao, YanLi
Li, ZhiMin
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Acad Agr Sci, Med Plants Res Inst, Kunming 650200, Yunnan, Peoples R ChinaYunnan Univ Chinese Med, Coll Tradit Chinese Med, Kunming 650500, Yunnan, Peoples R China
Li, ZhiMin
Wang, YuanZhong
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Acad Agr Sci, Med Plants Res Inst, Kunming 650200, Yunnan, Peoples R ChinaYunnan Univ Chinese Med, Coll Tradit Chinese Med, Kunming 650500, Yunnan, Peoples R China