Geometric graph manifolds with non-negative scalar curvature

被引:0
|
作者
Florit, Luis A. [1 ]
Ziller, Wolfgang [2 ]
机构
[1] IMPA, Est Dona Castorina 110, BR-22460320 Rio De Janeiro, Brazil
[2] Univ Penn, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
53C20 (Primary); 53C25 (Secondary);
D O I
10.1112/jlms.12466
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify n-dimensional geometric graph manifolds with non-negative scalar curvature by first showing that if n>3, the universal cover splits off a codimension 3-Euclidean factor. We then proceed with the classification of the 3-dimensional case, where the condition is equivalent to the eigenvalues of the Ricci tensor being (lambda,lambda,0) with lambda > 0. In this case we prove that such a manifold is either a lens space or a prism manifold with a very rigid metric. This allows us to also classify the moduli space of such metrics: it has infinitely many connected components for lens spaces, while it is connected for prism manifolds.
引用
收藏
页码:1475 / 1490
页数:16
相关论文
共 50 条
  • [1] Geometric formality and non-negative scalar curvature
    Kotschick, D.
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2017, 13 (03) : 437 - 451
  • [2] Almost Non-negative Scalar Curvature on Riemannian Manifolds Conformal to Tori
    Brian Allen
    [J]. The Journal of Geometric Analysis, 2021, 31 : 11190 - 11213
  • [3] Almost Non-negative Scalar Curvature on Riemannian Manifolds Conformal to Tori
    Allen, Brian
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (11) : 11190 - 11213
  • [4] Torus manifolds and non-negative curvature
    Wiemeler, Michael
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2015, 91 : 667 - 692
  • [5] Non-negative versus positive scalar curvature
    Schick, Thomas
    Wraith, David J.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 146 : 218 - 232
  • [6] THE HERMITIAN CURVATURE FLOW ON MANIFOLDS WITH NON-NEGATIVE GRIFFITHS CURVATURE
    Ustinovskiy, Yury
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2019, 141 (06) : 1751 - 1775
  • [7] Warped tori with almost non-negative scalar curvature
    Brian Allen
    Lisandra Hernandez-Vazquez
    Davide Parise
    Alec Payne
    Shengwen Wang
    [J]. Geometriae Dedicata, 2019, 200 : 153 - 171
  • [8] Kahler tori with almost non-negative scalar curvature
    Chu, Jianchun
    Lee, Man-Chun
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (07)
  • [9] Conformal tori with almost non-negative scalar curvature
    Chu, Jianchun
    Lee, Man-Chun
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (03)
  • [10] Conformal tori with almost non-negative scalar curvature
    Jianchun Chu
    Man-Chun Lee
    [J]. Calculus of Variations and Partial Differential Equations, 2022, 61