Modelling distinct failure mechanisms in composite materials by a combined phase field method

被引:69
|
作者
Zhang, Peng [1 ]
Feng, Yaoqi [2 ]
Tinh Quoc Bui [3 ,4 ]
Hu, Xiaofei [1 ]
Yao, Weian [1 ]
机构
[1] Dalian Univ Technol, Int Ctr Computat Mech, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China
[2] Beijing Inst Spacecraft Environm Engn, Beijing, Peoples R China
[3] Duy Tan Univ, Inst Res & Dev, Da Nang City, Vietnam
[4] Tokyo Inst Technol, Dept Civil & Environm Engn, Meguro Ku, 2-12-1-W8, Tokyo 1528552, Japan
基金
中国国家自然科学基金;
关键词
Composite material; Delamination; Matrix crack; Phase field model; Cohesive element; LOW-VELOCITY IMPACT; DELAMINATION MIGRATION; BRITTLE-FRACTURE; DAMAGE MODEL; ABAQUS IMPLEMENTATION; LAMINATED COMPOSITES; SUBSEQUENT MIGRATION; COHESIVE FRACTURE; FINITE-ELEMENTS; SIMULATION;
D O I
10.1016/j.compstruct.2019.111551
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A numerical computational framework that combines a phase field model (PFM) and cohesive element (CE) for modelling progressive failure in composite material is proposed. In this setting, cracks in single material and the interface are captured separately by using the PFM and CE. A unified PFM that incorporates general cohesive softening laws is adopted for quasi-brittle fracture process. An energy split scheme is used to prevent material cracking under compressive state. The irreversibility of the damage evolution is enforced by introducing a history related energy density. The compatibility issue between the CE and PFM is considered for accurately capturing complicated failure mechanisms in composite. The developed approach is implemented into commercial software ABAQUS through user-defined subroutine element (UEL). Validation is made by modelling an experiment on delamination migration of a cross ply composite. Failure mechanisms including delamination, matrix crack, and location of delamination migration that observed in the experiment are all well captured. Moreover, the importance of considering the compatibility between CE and other numerical methods is discussed through a complementary modelling.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Phase-field modelling of failure in ceramics with multiscale porosity
    Cavuoto, R.
    Lenarda, P.
    Tampieri, A.
    Bigoni, D.
    Paggi, M.
    MATERIALS & DESIGN, 2024, 238
  • [32] Second Symposium on Phase-Field Modelling in Materials Science
    Steinbach, Ingo
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2010, 101 (04) : 455 - 455
  • [33] Phase field modelling of crack propagation in functionally graded materials
    Hirshikesh
    Natarajan, Sundararajan
    Annabattula, Ratna K.
    Martinez-Paneda, Emilio
    COMPOSITES PART B-ENGINEERING, 2019, 169 : 239 - 248
  • [34] Modelling and simulation of fracture in anisotropic brittle materials by the phase-field method with novel strain decompositions
    Vu, B. T.
    Le Quang, H.
    He, Q. C.
    MECHANICS RESEARCH COMMUNICATIONS, 2022, 124
  • [35] Modelling of shrinkage formation in casting by the phase field method
    Zahra Jalouli
    Aude Caillaud
    Julien Artozoul
    Amine Ammar
    Ahmed El-Abidi
    Ahmed Fettah
    International Journal of Material Forming, 2021, 14 : 885 - 899
  • [36] Modelling of shrinkage formation in casting by the phase field method
    Jalouli, Zahra
    Caillaud, Aude
    Artozoul, Julien
    Ammar, Amine
    El-Abidi, Ahmed
    Fettah, Ahmed
    INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2021, 14 (05) : 885 - 899
  • [37] Multiple-phase-field modeling for fracture of composite materials
    Yuan, Jihai
    Mao, Yiqi
    Chen, Changping
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2022, 29 (28) : 7476 - 7490
  • [38] Numerical study on crack propagation in linear elastic multiphase composite materials using phase field method
    Li, Xiang
    Chu, Dongyang
    Gao, Yue
    Liu, Zhanli
    ENGINEERING COMPUTATIONS, 2019, 36 (01) : 307 - 333
  • [39] Numerical modeling of fracture propagation in orthotropic composite materials using an adaptive phase-field method
    Jain, Ishank
    Annavarapu, Chandrasekhar
    Mulay, Shantanu S.
    Rodriguez-Ferran, Antonio
    INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING SCIENCES AND APPLIED MATHEMATICS, 2023, 15 (04) : 144 - 154
  • [40] Numerical modeling of fracture propagation in orthotropic composite materials using an adaptive phase-field method
    Ishank Jain
    Chandrasekhar Annavarapu
    Shantanu S. Mulay
    Antonio Rodríguez-Ferran
    International Journal of Advances in Engineering Sciences and Applied Mathematics, 2023, 15 : 144 - 154