A fully dynamic algorithm for distributed shortest paths

被引:0
|
作者
Cicerone, S [1 ]
Di Stefano, G
Frigioni, D
Nanni, U
机构
[1] Univ Aquila, Dipartimento Ingn Elettr, I-67040 Laquila, Italy
[2] Univ Rome La Sapienza, Dipartimento Informat & Sistemist, I-00198 Rome, Italy
来源
关键词
D O I
10.1007/10719839_25
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a fully-dynamic distributed algorithm for the all-pairs shortest paths problem on general networks with positive real edge weights. If Delta (sigma) is the number of pairs of nodes changing the distance after a single edge modification sigma (insert, delete, weight-decrease, or weight-increase) then the message complexity of the proposed algorithm is O(n Delta (sigma)) in the worst case, where n, is the number of nodes of the network. If Delta (sigma) = o(n(2)), this is better than recomputing everything from scratch after each edge modification.
引用
收藏
页码:247 / 257
页数:11
相关论文
共 50 条
  • [1] A fully dynamic algorithm for distributed shortest paths
    Cicerone, S
    Di Stefano, G
    Frigloni, D
    Nanni, U
    [J]. THEORETICAL COMPUTER SCIENCE, 2003, 297 (1-3) : 83 - 102
  • [2] A New Fully Dynamic Algorithm for Distributed Shortest Paths and Its Experimental Evaluation
    Cicerone, Serafino
    D'Angelo, Gianlorenzo
    Di Stefano, Gabriele
    Frigioni, Daniele
    Maurizio, Vinicio
    [J]. EXPERIMENTAL ALGORITHMS, PROCEEDINGS, 2010, 6049 : 59 - 70
  • [3] A DISTRIBUTED ALGORITHM FOR SHORTEST PATHS
    CHEN, CC
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1982, 31 (09) : 898 - 899
  • [4] Engineering a New Algorithm for Distributed Shortest Paths on Dynamic Networks
    Cicerone, Serafino
    D'Angelo, Gianlorenzo
    Di Stefano, Gabriele
    Frigioni, Daniele
    Maurizio, Vinicio
    [J]. ALGORITHMICA, 2013, 66 (01) : 51 - 86
  • [5] Engineering a New Algorithm for Distributed Shortest Paths on Dynamic Networks
    Serafino Cicerone
    Gianlorenzo D’Angelo
    Gabriele Di Stefano
    Daniele Frigioni
    Vinicio Maurizio
    [J]. Algorithmica, 2013, 66 : 51 - 86
  • [6] Self-stabilizing algorithm for the shortest paths problem with a fully distributed demon
    Tsai, Ming-Shin
    Huang, Shing-Tsaan
    [J]. Parallel processing letters, 1994, 4 (1-2) : 65 - 72
  • [7] A New Deterministic Algorithm for Fully Dynamic All-Pairs Shortest Paths
    Chuzhoy, Julia
    Zhang, Ruimin
    [J]. PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 1159 - 1172
  • [8] Distributed and parallel K shortest paths algorithm
    Tan, GZ
    Cheng, Z
    Gao, W
    [J]. COMPUTER SCIENCE AND TECHNOLOGY IN NEW CENTURY, 2001, : 454 - 458
  • [9] A COMBINED UNIFORM AND HEURISTIC SEARCH ALGORITHM FOR MAINTAINING SHORTEST PATHS ON FULLY DYNAMIC GRAPHS
    Castronovo, Sandro
    Kunz, Bjoern
    Mueller, Christian
    [J]. ICAART: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 1, 2012, : 119 - 126
  • [10] Fully dynamic algorithms for maintaining shortest paths trees
    Frigioni, D
    Marchetti-Spaccamela, A
    Nanni, U
    [J]. JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2000, 34 (02): : 251 - 281