Different Regions Identification in Composite Strain-Encoded (C-SENC) Images Using Machine Learning Techniques

被引:0
|
作者
Motaal, Abdallah G.
El-Gayar, Neamat
Osman, Nael F.
机构
关键词
VIABILITY; MRI;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Different heart tissue identification is important for therapeutic decision-making in patients with myocardial infarction (MI), this provides physicians with a better clinical decision-making tool. Composite Strain Encoding (C-SENC) is an MRI acquisition technique that is used to acquire cardiac tissue viability and contractility images. It combines the use of black-blood delayed-enhancement (DE) imaging to identify the infracted (dead) tissue inside the heart muscle and the ability to image myocardial deformation from the strain-encoding (SENC) imaging technique. In this work, various machine learning techniques are applied to identify the different heart tissues and the background regions in the C-SENC images. The proposed methods are tested using numerical simulations of the heart C-SENC images and real images of patients. The results show that the applied techniques are able to identify the different components of the image with a high accuracy.
引用
收藏
页码:231 / 240
页数:10
相关论文
共 17 条
  • [1] Automated Cardiac-Tissue Identification in Composite Strain-Encoded (C-SENC) Images Using Fuzzy K-Means and Bayesian Classifier
    Motaal, Abdallah G.
    El-Gayar, Neamat
    Osman, Nael F.
    [J]. 2010 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING (ICBBE 2010), 2010,
  • [2] Myocardium segmentation in Strain-Encoded (SENC) magnetic resonance images using graph-cuts
    Al-Agamy, Ahmed O.
    Osman, Nael F.
    Fahmy, Ahmed S.
    [J]. IET IMAGE PROCESSING, 2013, 7 (05) : 415 - 422
  • [3] Two clustering techniques of myocardium using C-SENC images: A comparison with multi-stage clustering
    El-Metwally, Shereen M.
    Osman, Nael F.
    Kadah, Yasser M.
    Fahmy, Ahmed S.
    [J]. 2007 INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING & SYSTEMS: ICCES '07, 2007, : 215 - +
  • [4] FULLY AUTOMATED SEGMENTATION OF LONG-AXIS MRI STRAIN-ENCODED (SENC) IMAGES USING ACTIVE SHAPE MODEL (ASM)
    Harouni, Ahmed A.
    Bluemke, David A.
    Osman, Nael F.
    [J]. 2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 827 - +
  • [5] Identification of different heart tissues from MRI C-SENC images using an unsupervised multi-stage fuzzy clustering technique
    Ibrahim, Ei-Sayed H.
    Weiss, Robert G.
    Stuber, Matthias
    Spooner, Amy E.
    Osman, Nael F.
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2008, 28 (02) : 519 - 526
  • [6] Language identification of character images using machine learning techniques
    Liu, YH
    Lin, CC
    Chang, F
    [J]. EIGHTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS 1 AND 2, PROCEEDINGS, 2005, : 630 - 634
  • [7] Identification of Individual Glandular Regions Using LCWT and Machine Learning Techniques
    Gabriel Garcia, Jose
    Colomer, Adrian
    Naranjo, Valery
    Penaranda, Francisco
    Sales, M. A.
    [J]. INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2018, PT I, 2018, 11314 : 642 - 650
  • [8] Delamination identification in sandwich composite structures using machine learning techniques
    Viotti, Ian Dias
    Gomes, Guilherme Ferreira
    [J]. COMPUTERS & STRUCTURES, 2023, 280
  • [9] Identification of Ovarian mass through Ultrasound Images using Machine Learning Techniques
    Pathak, Hemita
    Kulkarni, Vrushali
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON RESEARCH IN COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (ICRCICN), 2015, : 137 - 140
  • [10] Hybrid machine learning techniques for gender identification from handwritten images using textural features
    Babu, D. Vijendra
    Alfurhood, Badria Sulaiman
    Ramesh, J. V. N.
    Jos, Bobin Cherian
    Bharathi, P. Shyamala
    Raju, Battula R. S. S.
    [J]. SOFT COMPUTING, 2023,