Detecting compact binary coalescences with seedless clustering

被引:12
|
作者
Coughlin, M. [1 ]
Thrane, E. [2 ]
Christensen, N. [3 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] CALTECH, LIGO Lab, Pasadena, CA 91125 USA
[3] Carleton Coll, Northfield, MN 55057 USA
来源
PHYSICAL REVIEW D | 2014年 / 90卷 / 08期
基金
美国国家科学基金会;
关键词
GRAVITATIONAL-WAVES; OBJECT BINARIES;
D O I
10.1103/PhysRevD.90.083005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Compact binary coalescences are a promising source of gravitational waves for second-generation interferometric gravitational-wave detectors. Although matched filtering is the optimal search method for well-modeled systems, alternative detection strategies can be used to guard against theoretical errors (e.g., involving new physics and/or assumptions about spin or eccentricity) while providing a measure of redundancy. In a previous paper, we showed how "seedless clustering" can be used to detect long-lived gravitational-wave transients in both targeted and all-sky searches. In this paper, we apply seedless clustering to the problem of low-mass (M-total <= 10M(circle dot)) compact binary coalescences for both spinning and eccentric systems. We show that seedless clustering provides a robust and computationally efficient method for detecting low-mass compact binaries.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Addressing the challenges of detecting time-overlapping compact binary coalescences
    Relton, Philip
    Virtuoso, Andrea
    Bini, Sophie
    Raymond, Vivien
    Harry, Ian
    Drago, Marco
    Lazzaro, Claudia
    Miani, Andrea
    Tiwari, Shubhanshu
    [J]. PHYSICAL REVIEW D, 2022, 106 (10)
  • [2] Compact binary coalescences: constraints on waveforms
    Abhay Ashtekar
    Tommaso De Lorenzo
    Neev Khera
    [J]. General Relativity and Gravitation, 2020, 52
  • [3] Compact binary coalescences: constraints on waveforms
    Ashtekar, Abhay
    De Lorenzo, Tommaso
    Khera, Neev
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2020, 52 (11)
  • [4] The MBTA pipeline for detecting compact binary coalescences in the third LIGO-Virgo observing run
    Aubin, F.
    Brighenti, F.
    Chierici, R.
    Estevez, D.
    Greco, G.
    Guidi, G. M.
    Juste, V
    Marion, F.
    Mours, B.
    Nitoglia, E.
    Sauter, O.
    Sordini, V
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (09)
  • [5] Compact binary coalescences: The subtle issue of angular momentum
    Ashtekar, Abhay
    De Lorenzo, Tommaso
    Khera, Neev
    [J]. PHYSICAL REVIEW D, 2020, 101 (04)
  • [6] Compact Binary Coalescences: Astrophysical Processes and Lessons Learned
    Spera, Mario
    Trani, Alessandro Alberto
    Mencagli, Mattia
    [J]. GALAXIES, 2022, 10 (04):
  • [7] Detecting cosmological gravitational wave background after removal of compact binary coalescences in future gravitational wave detectors
    Zhong, Haowen
    Ormiston, Rich
    Mandic, Vuk
    [J]. PHYSICAL REVIEW D, 2023, 107 (06)
  • [8] Reliability of complete gravitational waveform models for compact binary coalescences
    Ohme, Frank
    Hannam, Mark
    Husa, Sascha
    [J]. PHYSICAL REVIEW D, 2011, 84 (06):
  • [9] Polarization test of gravitational waves from compact binary coalescences
    Takeda, Hiroki
    Nishizawa, Atsushi
    Michimura, Yuta
    Nagano, Koji
    Komori, Kentaro
    Ando, Masaki
    Hayama, Kazuhiro
    [J]. PHYSICAL REVIEW D, 2018, 98 (02)
  • [10] Gravitational wave probes of parity violation in compact binary coalescences
    Alexander, Stephon H.
    Yunes, Nicolas
    [J]. PHYSICAL REVIEW D, 2018, 97 (06)