Learning Polynomial-Based Separable Convolution for 3D Point Cloud Analysis

被引:1
|
作者
Yu, Ruixuan [1 ]
Sun, Jian [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
polynomial; separable; point convolution; point cloud;
D O I
10.3390/s21124211
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Shape classification and segmentation of point cloud data are two of the most demanding tasks in photogrammetry and remote sensing applications, which aim to recognize object categories or point labels. Point convolution is an essential operation when designing a network on point clouds for these tasks, which helps to explore 3D local points for feature learning. In this paper, we propose a novel point convolution (PSConv) using separable weights learned with polynomials for 3D point cloud analysis. Specifically, we generalize the traditional convolution defined on the regular data to a 3D point cloud by learning the point convolution kernels based on the polynomials of transformed local point coordinates. We further propose a separable assumption on the convolution kernels to reduce the parameter size and computational cost for our point convolution. Using this novel point convolution, a hierarchical network (PSNet) defined on the point cloud is proposed for 3D shape analysis tasks such as 3D shape classification and segmentation. Experiments are conducted on standard datasets, including synthetic and real scanned ones, and our PSNet achieves state-of-the-art accuracies for shape classification, as well as competitive results for shape segmentation compared with previous methods.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Learning of 3D Graph Convolution Networks for Point Cloud Analysis
    Lin, Zhi-Hao
    Huang, Sheng Yu
    Wang, Yu-Chiang Frank
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (08) : 4212 - 4224
  • [2] Convolution in the Cloud: Learning Deformable Kernels in 3D Graph Convolution Networks for Point Cloud Analysis
    Lin, Zhi-Hao
    Huang, Sheng-Yu
    Wang, Yu-Chiang Frank
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 1797 - 1806
  • [3] Continuous SO(3) Equivariant Convolution for 3D Point Cloud Analysis
    Kim, Jaein
    Yoo, Hee Bin
    Han, Dong-Sig
    Song, Yeon-Ji
    Zhang, Byoung-Tak
    COMPUTER VISION - ECCV 2024, PT LII, 2025, 15110 : 59 - 75
  • [4] Clustering based Point Cloud Representation Learning for 3D Analysis
    Feng, Tuo
    Wang, Wenguan
    Wang, Xiaohan
    Yang, Yi
    Zheng, Qinghua
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 8249 - 8260
  • [5] Point Cloud Classification and Segmentation Model Based on Graph Convolution and 3D Direction Convolution
    Lan, Hong
    Chen, Hao
    Zhang, Pufen
    Computer Engineering and Applications, 2023, 59 (08) : 182 - 191
  • [6] PPConv: Polypod Convolution for 3D Point Cloud Description
    Song, Hyunsoo
    Lee, Seungkyu
    SA'18: SIGGRAPH ASIA 2018 POSTERS, 2018,
  • [7] Dynamic Convolution for 3D Point Cloud Instance Segmentation
    He, Tong
    Shen, Chunhua
    van den Hengel, Anton
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 5697 - 5711
  • [8] A learning based 3D reconstruction method for point cloud
    Guo Qi
    Li Jinhui
    2020 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2020, : 271 - 276
  • [9] 3D Point Cloud Classification Based on Local-Nonlocal Interactive Convolution
    Lu X.
    Yang B.
    Ye H.
    Cao F.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2022, 35 (02): : 141 - 149
  • [10] Research progress of 3D point cloud analysis methods based on deep learning
    Chen H.
    Wu Y.
    Zhang Y.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2023, 44 (11): : 130 - 158