Using diversity in cluster ensembles

被引:0
|
作者
Kuncheva, LI [1 ]
Hadjitodorov, ST [1 ]
机构
[1] Univ Coll N Wales, Sch Informat, Bangor LL57 1UT, Gwynedd, Wales
关键词
pattern recognition; multiple classifier systems; cluster ensembles; diversity;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The pairwise approach to cluster ensembles uses multiple partitions, each of which constructs a coincidence matrix between all pairs of objects. The matrices for the partitions are then combined and a final clustering is derived thereof. Here we study the diversity within such cluster ensembles. Based on this, we propose a variant of the generic ensemble method where the number of overproduced clusters is chosen randomly for every ensemble member (partition). Using three artificial sets we show that this approach increases the spread of the diversity within the ensemble thereby leading to a better match with the known cluster labels. Experimental results with three real data sets are also reported.
引用
收藏
页码:1214 / 1219
页数:6
相关论文
共 50 条
  • [1] Moderate diversity for better cluster ensembles
    Hadjitodorov, Stefan T.
    Kuncheva, Ludmila I.
    Todorova, Ludmila P.
    INFORMATION FUSION, 2006, 7 (03) : 264 - 275
  • [2] Unsupervised segmentation using cluster ensembles
    Yang, Jie (jieyang@sjtu.edu.cn), 1600, Springer Verlag (8836):
  • [3] Unsupervised Segmentation Using Cluster Ensembles
    Zhang, Wei
    Yang, Jie
    Jia, Wenjing
    Kasabov, Nikola
    Jia, Zhenhong
    Zhou, Lei
    NEURAL INFORMATION PROCESSING, ICONIP 2014, PT III, 2014, 8836 : 76 - 84
  • [4] Defect Prediction by Using Cluster Ensembles
    Yang, Yanhong
    Yang, Jun
    Qian, Hongbing
    PROCEEDINGS OF 2018 TENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2018, : 631 - 636
  • [5] Robust Document Clustering by Exploiting Feature Diversity in Cluster Ensembles
    Sevillano, Xavier
    Cobo, German
    Alias, Francesc
    Claudi Socoro, Joan
    PROCESAMIENTO DEL LENGUAJE NATURAL, 2006, (37): : 169 - 176
  • [6] Improving the quality of Clustering using Cluster Ensembles
    Nisha, M. N.
    Mohanavalli, S.
    Swathika, R.
    2013 IEEE CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES (ICT 2013), 2013, : 88 - 92
  • [7] Cluster ensembles
    Hornik, K
    CLASSIFICATION - THE UBIQUITOUS CHALLENGE, 2005, : 65 - 72
  • [8] Cluster ensembles
    Ghosh, Joydeep
    Acharya, Ayan
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2011, 1 (04) : 305 - 315
  • [9] Using Ontology and Cluster Ensembles for Geospatial Clustering Analysis
    Wang, Xin
    Gu, Wei
    INTELLIGENT COMPUTING METHODOLOGIES, ICIC 2017, PT III, 2017, 10363 : 400 - 410
  • [10] Efficient Fusion of Cluster Ensembles Using Inherent Voting
    Anandhi, R. J.
    Subramanyam, Natarajan
    IAMA: 2009 INTERNATIONAL CONFERENCE ON INTELLIGENT AGENT & MULTI-AGENT SYSTEMS, 2009, : 198 - +