Tuning the Casimir-Polder interaction via magneto-optical effects in graphene

被引:41
|
作者
Cysne, T. [1 ]
Kort-Kamp, W. J. M. [1 ]
Oliver, D. [1 ]
Pinheiro, F. A. [1 ]
Rosa, F. S. S. [1 ]
Farina, C. [1 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, RJ, Brazil
来源
PHYSICAL REVIEW A | 2014年 / 90卷 / 05期
关键词
VANDERWAALS FORCES; SURFACE;
D O I
10.1103/PhysRevA.90.052511
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the dispersive Casimir-Polder interaction between a rubidium atom and a suspended graphene sheet subjected to an external magnetic field B. We demonstrate that this concrete physical system allows for an unprecedented control of dispersive interactions at micro-and nanoscales. Indeed, we show that the application of an external magnetic field can induce an 80% reduction in the Casimir-Polder energy relative to its value without the field. We also show that sharp discontinuities emerge in the Casimir-Polder interaction energy for certain values of the applied magnetic field at low temperatures. Moreover, for sufficiently large distances, these discontinuities show up as a plateau-like pattern with a quantized Casimir-Polder interaction energy, in a phenomenon that can be explained in terms of the quantum Hall effect. In addition, we point out the importance of thermal effects in the Casimir-Polder interaction, which we show must be taken into account even for considerably short distances. In this case, the discontinuities in the atom-graphene dispersive interaction do not occur, which by no means prevents the tuning of the interaction in similar to 50% by the application of the external magnetic field.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Tuning the surface Casimir-Polder interaction
    Chan, Eng Aik
    Adamo, Giorgio
    Aljunid, Syed Abdullah
    Laliotis, Athanasios
    Ducloy, Martial
    Zheludev, Nikolay
    Wilkowski, David
    OPTICAL, OPTO-ATOMIC, AND ENTANGLEMENT-ENHANCED PRECISION METROLOGY, 2019, 10934
  • [2] Thermal Casimir-Polder interaction of different atoms with graphene
    Chaichian, M.
    Klimchitskaya, G. L.
    Mostepanenko, V. M.
    Tureanu, A.
    PHYSICAL REVIEW A, 2012, 86 (01):
  • [3] THERMAL EFFECTS IN THE MAGNETIC CASIMIR-POLDER INTERACTION
    Haakh, H.
    Intravaia, F.
    Henkel, C.
    PROCEEDINGS OF THE NINTH CONFERENCE ON QUANTUM FIELD THEORY UNDER THE INFLUENCE OF EXTERNAL CONDITIONS (QFEXT09), 2010, : 194 - 198
  • [4] Casimir-Polder interaction of excited media
    Sherkunov, Yu.
    OPTICS AND SPECTROSCOPY, 2007, 103 (03) : 388 - 397
  • [5] Retardation effects in spectroscopic measurements of the Casimir-Polder interaction
    Carvalho, J. C. de Aquino
    Pedri, P.
    Ducloy, M.
    Laliotis, A.
    PHYSICAL REVIEW A, 2018, 97 (02)
  • [6] Casimir-Polder interaction at finite temperature
    Goedecke, GH
    Wood, RC
    PHYSICAL REVIEW A, 1999, 60 (03): : 2577 - 2580
  • [7] On the quantum nature of the Casimir-Polder interaction
    Barnett, SM
    Aspect, A
    Milonni, PW
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2000, 33 (04) : L143 - L149
  • [8] Casimir-Polder interaction of excited media
    Yu. Sherkunov
    Optics and Spectroscopy, 2007, 103 : 388 - 397
  • [9] Nonadditivity of Optical and Casimir-Polder Potentials
    Fuchs, Sebastian
    Bennett, Robert
    Krems, Roman V.
    Buhmann, Stefan Yoshi
    PHYSICAL REVIEW LETTERS, 2018, 121 (08)
  • [10] Nuclear mass corrections to the Casimir-Polder interaction
    Lach, Grzegorz
    Pachucki, Krzysztof
    PHYSICAL REVIEW A, 2016, 93 (03)