Galois theory of thick subcategories in modular representation theory

被引:4
|
作者
Hovey, M [1 ]
Palmieri, JH
机构
[1] Wesleyan Univ, Dept Math, Middletown, CT 06459 USA
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
D O I
10.1006/jabr.2000.8347
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
D. J. Benson, J. F. Carlson, and J. Rickard [1997, Fund. Math. 153, 59-80] classified the tenser-closed thick subcategories of finite-dimensional representations of finite groups over algebraically closed fields. In this paper, we remove the algebraically closed hypothesis by applying some Galois theory. Our methods apply more generally to finite-dimensional cocommutative Hopf algebras over a field. Thus they allow us to drop the algebraically closed hypothesis in the classification of thick subcategories of modules over finite-dimensional sub-Hopf algebras of the Steenrod algebra as well, (C) 2000 Academic Press.
引用
收藏
页码:713 / 729
页数:17
相关论文
共 50 条
  • [1] Spherical subcategories in representation theory
    Andreas Hochenegger
    Martin Kalck
    David Ploog
    Mathematische Zeitschrift, 2019, 291 : 113 - 147
  • [2] Spherical subcategories in representation theory
    Hochenegger, Andreas
    Kalck, Martin
    Ploog, David
    MATHEMATISCHE ZEITSCHRIFT, 2019, 291 (1-2) : 113 - 147
  • [3] Descent principle in modular Galois theory
    Shreeram S. Abhyankar
    Pradipkumar H. Keskar
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2001, 111 : 139 - 149
  • [4] Descent principle in modular Galois theory
    Abhyankar, SS
    Keskar, PH
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2001, 111 (02): : 139 - 149
  • [5] Resolution of singularities and modular Galois theory
    Abhyankar, SS
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 38 (02) : 131 - 169
  • [6] Modular Tensor Categories, Subcategories, and Galois Orbits
    Plavnik, Julia
    Schopieray, Andrew
    Yu, Zhiqiang
    Zhang, Qing
    TRANSFORMATION GROUPS, 2024, 29 (04) : 1623 - 1648
  • [7] On the representation theory of Galois and atomic topoi
    Dubuc, EJ
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 186 (03) : 233 - 275
  • [8] Galois theory for a certain class of modular lattices
    Panin A.A.
    Yakovlev A.V.
    Journal of Mathematical Sciences, 1999, 95 (2) : 2126 - 2135
  • [9] Ghosts in modular representation theory
    Chebolu, Sunil K.
    Christensen, J. Daniel
    Minac, Jan
    ADVANCES IN MATHEMATICS, 2008, 217 (06) : 2782 - 2799
  • [10] WEIL-REPRESENTATION AND LOCAL GALOIS THEORY
    ZINK, EW
    MATHEMATISCHE NACHRICHTEN, 1979, 92 : 265 - 288