A novel algebraic approach to spin symmetry for Dirac equation with scalar and vector second Poschl-Teller potentials

被引:74
|
作者
Wei, Gao-Feng [1 ]
Dong, Shi-Hai [2 ]
机构
[1] Xian Univ Arts & Sci, Dept Phys, Xian 710065, Peoples R China
[2] Inst Politecn Nacl, Escuela Super Fis & Matemat, Unidad Profes Adolfo Lopez Mateos, Mexico City 07738, DF, Mexico
来源
EUROPEAN PHYSICAL JOURNAL A | 2010年 / 43卷 / 02期
关键词
ORBIT-COUPLING TERM; PSEUDOSPIN SYMMETRY; STATE;
D O I
10.1140/epja/i2009-10901-8
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
By a novel algebraic method we study the approximate solution to the Dirac equation with scalar and vector second Poschl-Teller potential carrying spin symmetry. The transcendental energy equation and spinor wave functions with arbitrary spin-orbit coupling quantum number k are presented. It is found that there exist only positive-energy bound states in the case of spin symmetry. Also, the energy eigenvalue approaches a constant when the potential parameter alpha goes to zero. The equally scalar and vector case is studied briefly.
引用
收藏
页码:185 / 190
页数:6
相关论文
共 50 条