ON THE PROBLEM OF NON-STATIONARY WAVES PROPAGATION IN A LINEAR-VISCOELASTIC LAYER

被引:0
|
作者
Korovaytseva, Ekaterina A. [1 ]
Pshenichnov, Sergey G. [1 ]
Zhelyazov, Todor [2 ]
Datcheva, Maria D. [3 ]
机构
[1] Lomonosov Moscow State Univ, Inst Mech, 1 Michurinsky Prospect, Moscow 119192, Russia
[2] Tech Univ Sofia, Dept Mech, Fac Transport Engn, 8 Kliment Ohridski Blvd, Sofia 1000, Bulgaria
[3] Bulgarian Acad Sci, Inst Mech, Akad G Bonchev St,Bl 4, Sofia 1113, Bulgaria
来源
基金
俄罗斯基础研究基金会;
关键词
non-stationary waves; viscoelastic dynamic problems; materials with hereditary properties; DYNAMIC PROBLEMS;
D O I
10.7546/CRABS.2021.05.13
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work a solution is presented of one-dimensional problem for non-stationary waves propagation in an infinite linear viscoelastic layer. The hereditary properties of the layer are described by the Boltzmann-Volterra model with a specific class of hereditary kernels. The Laplace transform technique is applied to solve the initial-boundary value problem with subsequent inversion. Depending on the type of hereditary kernels, the solution of the problem in terms of originals is presented in different forms. The solution is valid for the entire time range without the restriction for smallness of viscosity. The obtained solution allows to investigate the transient wave propagation process in a layer for given constitutive functions and parameters. It is demonstrated how hereditary kernels of different types, satisfying appropriate conditions, can have the same effect on the wave propagation.
引用
收藏
页码:748 / 755
页数:8
相关论文
共 50 条
  • [1] Analytical Solution of Non-stationary Waves Propagation in Viscoelastic Layer Problem
    E. A. Korovaytseva
    S. G. Pshenichnov
    D. V. Tarlakovskii
    [J]. Lobachevskii Journal of Mathematics, 2019, 40 : 2084 - 2089
  • [2] Analytical Solution of Non-stationary Waves Propagation in Viscoelastic Layer Problem
    Korovaytseva, E. A.
    Pshenichnov, S. G.
    Tarlakovskii, D. V.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2019, 40 (12) : 2084 - 2089
  • [3] Non-stationary viscoelastic waves
    Karnaukhov, V. G.
    [J]. TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2013, 4 (01): : 110 - 111
  • [4] Propagation of non-stationary random waves in viscoelastic stratified solids
    Gao, Q.
    Lin, J. H.
    Zhong, W. X.
    Williams, F. W.
    [J]. COMPUTERS AND GEOTECHNICS, 2006, 33 (08) : 444 - 453
  • [5] On propagation of small non-stationary disturbances in linear viscoelastic fluids
    Basmat, AS
    [J]. ACTA MECHANICA, 1998, 127 (1-4) : 225 - 233
  • [6] On propagation of small non-stationary disturbances in linear viscoelastic fluids
    A. S. Basmat
    [J]. Acta Mechanica, 1998, 127 : 225 - 233
  • [7] Propagation of one-dimensional non-stationary waves in viscoelastic half space
    Korovaytseva E.A.
    Pshenichnov S.G.
    Tarlakovskii D.V.
    [J]. Lobachevskii Journal of Mathematics, 2017, 38 (5) : 827 - 832
  • [8] The propagation of non-stationary waves from a spherical cavity in an acoustic layer
    Saliyev, A. A.
    Tarlakovskii, D. V.
    Shukurov, A. M.
    [J]. PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2008, 72 (04): : 410 - 416
  • [9] Non-linear and non-stationary sea waves
    Cherneva, Z.
    Guedes Soares, C.
    [J]. MARINE TECHNOLOGY AND ENGINEERING, VOL 1, 2011, : 45 - 67
  • [10] Propagation of partially coherent non-stationary random waves in a viscoelastic layered half-space
    Gao, Q.
    Lin, J. H.
    Zhong, W. X.
    Howson, W. P.
    Williams, F. W.
    [J]. SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2008, 28 (04) : 305 - 320