Spatially Varying Coefficient Model for Neuroimaging Data With Jump Discontinuities
被引:70
|
作者:
Zhu, Hongtu
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USAUniv N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
Zhu, Hongtu
[1
]
Fan, Jianqing
论文数: 0引用数: 0
h-index: 0
机构:
Princeton Univ, Dept Operat Res & Finance Engn, Princeton, NJ 08544 USA
Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R ChinaUniv N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
Fan, Jianqing
[2
,3
]
Kong, Linglong
论文数: 0引用数: 0
h-index: 0
机构:
Univ Alberta, Dept Math & Stat, Edmonton, AB T6G 2G1, CanadaUniv N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
Kong, Linglong
[4
]
机构:
[1] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
[2] Princeton Univ, Dept Operat Res & Finance Engn, Princeton, NJ 08544 USA
[3] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
[4] Univ Alberta, Dept Math & Stat, Edmonton, AB T6G 2G1, Canada
Motivated by recent work on studying massive imaging data in various neuroimaging studies, we propose a novel spatially varying coefficient model (SVCM) to capture the varying association between imaging measures in a three-dimensional volume (or two-dimensional surface) with a set of covariates. Two stylized features of neuorimaging data are the presence of multiple piecewise smooth regions with unknown edges and jumps and substantial spatial correlations. To specifically account for these two features, SVCM includes a measurement model with multiple varying coefficient functions, a jumping surface model for each varying coefficient function, and a functional principal component model. We develop a three-stage estimation procedure to simultaneously estimate the varying coefficient functions and the spatial correlations. The estimation procedure includes a fast multiscale adaptive estimation and testing procedure to independently estimate each varying coefficient function, while preserving its edges among different piecewise-smooth regions. We systematically investigate the asymptotic properties (e.g., consistency and asymptotic normality) of the multiscale adaptive parameter estimates. We also establish the uniform convergence rate of the estimated spatial covariance function and its associated eigenvalues and eigenfunctions. Our Monte Carlo simulation and real-data analysis have confirmed the excellent performance of SVCM. Supplementary materials for this article are available online.
机构:
Univ Calif Berkeley, Div Biostat, Berkeley, CA 94720 USAUniv Calif Berkeley, Div Biostat, Berkeley, CA 94720 USA
Li, Lexin
Kang, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USAUniv Calif Berkeley, Div Biostat, Berkeley, CA 94720 USA
Kang, Jian
Lockhart, Samuel N.
论文数: 0引用数: 0
h-index: 0
机构:
Wake Forest Sch Med, Dept Internal Med, Winston Salem, NC 27101 USAUniv Calif Berkeley, Div Biostat, Berkeley, CA 94720 USA
Lockhart, Samuel N.
论文数: 引用数:
h-index:
机构:
Adams, Jenna
Jagust, William J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA
Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA
Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USAUniv Calif Berkeley, Div Biostat, Berkeley, CA 94720 USA
机构:
Univ Fed Rio de Janeiro, Inst Matemat, Dept Metodos Estatist, BR-21941 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, Inst Matemat, Dept Metodos Estatist, BR-21941 Rio De Janeiro, Brazil
Paez, Marina S.
Garnerman, Dani
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Matemat, Dept Metodos Estatist, BR-21941 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, Inst Matemat, Dept Metodos Estatist, BR-21941 Rio De Janeiro, Brazil
Garnerman, Dani
Landim, Flavia M. P. F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Matemat, Dept Metodos Estatist, BR-21941 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, Inst Matemat, Dept Metodos Estatist, BR-21941 Rio De Janeiro, Brazil
Landim, Flavia M. P. F.
Salazar, Esther
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Inst Matemat, Dept Metodos Estatist, BR-21941 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, Inst Matemat, Dept Metodos Estatist, BR-21941 Rio De Janeiro, Brazil
机构:
Korea Adv Inst Sci & Technol, Dept Ind & Syst Engn, 291 Daehak Ro, Daejeon 34141, South KoreaKorea Adv Inst Sci & Technol, Dept Ind & Syst Engn, 291 Daehak Ro, Daejeon 34141, South Korea
Kim, Keunseo
Kim, Hyojoong
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Dept Ind & Syst Engn, 291 Daehak Ro, Daejeon 34141, South KoreaKorea Adv Inst Sci & Technol, Dept Ind & Syst Engn, 291 Daehak Ro, Daejeon 34141, South Korea
Kim, Hyojoong
Kim, Vinnam
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Dept Ind & Syst Engn, 291 Daehak Ro, Daejeon 34141, South KoreaKorea Adv Inst Sci & Technol, Dept Ind & Syst Engn, 291 Daehak Ro, Daejeon 34141, South Korea
Kim, Vinnam
Kim, Heeyoung
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Dept Ind & Syst Engn, 291 Daehak Ro, Daejeon 34141, South KoreaKorea Adv Inst Sci & Technol, Dept Ind & Syst Engn, 291 Daehak Ro, Daejeon 34141, South Korea