Output Fisher embedding regression

被引:2
|
作者
Djerrab, Moussab [1 ]
Garcia, Alexandre [1 ]
Sangnier, Maxime [2 ]
d'Alche-Buc, Florence [1 ]
机构
[1] Univ Paris Saclay, Telecom ParisTech, F-75013 Paris, France
[2] Sorbonne Univ, CNRS, UPMC Univ Paris 06, F-75005 Paris, France
关键词
Fisher vector; Structured output prediction; Output kernel regression; Small data regime; Weak supervision;
D O I
10.1007/s10994-018-5698-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate the use of Fisher vector representations in the output space in the context of structured and multiple output prediction. A novel, general and versatile method called output Fisher embedding regression is introduced. Based on a probabilistic modeling of training output data and the minimization of a Fisher loss, it requires to solve a pre-image problem in the prediction phase. For Gaussian Mixture Models and State-Space Models, we show that the pre-image problem enjoys a closed-form solution with an appropriate choice of the embedding. Numerical experiments on a wide variety of tasks (time series prediction, multi-output regression and multi-class classification) highlight the relevance of the approach for learning under limited supervision like learning with a handful of data per label and weakly supervised learning.
引用
收藏
页码:1229 / 1256
页数:28
相关论文
共 50 条
  • [1] Output Fisher embedding regression
    Moussab Djerrab
    Alexandre Garcia
    Maxime Sangnier
    Florence d’Alché-Buc
    [J]. Machine Learning, 2018, 107 : 1229 - 1256
  • [2] Local Fisher embedding
    de Ridder, D
    Loog, M
    Reinders, MJT
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, 2004, : 295 - 298
  • [3] Fisher and regression
    Aldrich, J
    [J]. STATISTICAL SCIENCE, 2005, 20 (04) : 401 - 417
  • [4] FINE: Fisher Information Nonparametric Embedding
    Carter, Kevin M.
    Raich, Raviv
    Finn, William G.
    Hero, Alfred O., III
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (11) : 2093 - U195
  • [5] NEWS STORY CLUSTERING WITH FISHER EMBEDDING
    Chu, Wei-Ta
    Hsu, Han-Nung
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 1175 - 1178
  • [6] Local Fisher Discriminant Embedding for Face Recognition
    Zhang, Chengyuan
    Ruan, Qiuqi
    Pan, Xin
    [J]. ICSP: 2008 9TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-5, PROCEEDINGS, 2008, : 1661 - 1664
  • [7] Fisher Information Embedding for Node and Graph Learning
    Chen, Dexiong
    Pellizzoni, Paolo
    Borgwardt, Karsten
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [8] Fisher Information Embedding for Video Indexing and Retrieval
    Chen, Xu
    Hero, Alfred O.
    [J]. COMPUTATIONAL IMAGING IX, 2011, 7873
  • [9] Deep Embedding Logistic Regression
    Cui, Zhicheng
    Zhang, Muhan
    Chen, Yixin
    [J]. 2018 9TH IEEE INTERNATIONAL CONFERENCE ON BIG KNOWLEDGE (ICBK), 2018, : 176 - 183
  • [10] Fisher lecture: Dimension reduction in regression
    Cook, R. Dennis
    [J]. STATISTICAL SCIENCE, 2007, 22 (01) : 1 - 26