The effects of compressibility of natural gas hydrate-bearing sediments on gas production using depressurization

被引:72
|
作者
Sun, Xiang [1 ,2 ]
Li, Yanghui [1 ]
Liu, Yu [1 ]
Song, Yongchen [1 ]
机构
[1] Dalian Univ Technol, Minist Educ, Key Lab Ocean Energy Utilizat & Energy Conservat, Dalian 116024, Peoples R China
[2] Univ Calif Berkeley, Berkeley, CA 94720 USA
基金
中国国家自然科学基金;
关键词
Gas production; Depressurization; Hydrate dissociation; Compressibility; QILIAN MOUNTAIN PERMAFROST; METHANE HYDRATE; NUMERICAL-SIMULATION; HEAT-TRANSFER; THERMAL-STIMULATION; GEOMECHANICAL MODEL; WATER STIMULATION; DISSOCIATION; RESERVOIR; DEPOSITS;
D O I
10.1016/j.energy.2019.07.108
中图分类号
O414.1 [热力学];
学科分类号
摘要
Natural gas hydrate is a new alternative energy that has attracted global attention in recent years. Depressurization is considered a fundamental method of producing natural gas from gas hydrate-bearing sediments (GHESs). However, soil compaction during depressurization is a significant problem for production efficiency and safety. The compressibility of soil affects the hydrate dissociation in the coupled process of heat transfer, fluid flow, and soil compaction. In this study, a fully coupled Thermohydro-chemo-mechanical (THCM) model is applied to simulate Masuda's core-scale gas production experiments. The effects of compressibility on the changes in gas production rate, pore pressure, temperature, hydrate saturation, permeability, and heat conductivity are investigated by varying the parameters governing compressibility including the bulk modulus of host sediments and hydrate-enhanced bulk modulus. The results show that the higher compressibility corresponds to a larger reduction in porosity further impacting the variation in effective permeability, heat conductivity, and heat convection during depressurization. In Masuda's test, the pressure changes indicate that the soil compaction might occurs during depressurization. Because the real field production is implemented under confining condition, Masuda's test should be developed to consider the compressibility of GHBSs. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:837 / 846
页数:10
相关论文
共 50 条
  • [1] Numerical simulation on gas production from hydrate-bearing sediments by depressurization considering time-varying reservoir compressibility
    Li, Shuxia
    Liu, Lu
    Wu, Didi
    Zhang, Ningtao
    Guo, Yang
    [J]. GAS SCIENCE AND ENGINEERING, 2024, 121
  • [2] NUMERICAL INVESTIGATION ON GAS HYDRATE PRODUCTION BY DEPRESSURIZATION IN HYDRATE-BEARING RESERVOIR
    Long, Xiaoyan
    Tjok, Komin
    Adhikari, Sudarshan
    [J]. PROCEEDINGS OF THE ASME 35TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING , 2016, VOL 8, 2016,
  • [3] Effects of Formation Dip on Gas Production from Unconfined Marine Hydrate-Bearing Sediments through Depressurization
    Yuan, Yilong
    Xu, Tianfu
    Xia, Yingli
    Xin, Xin
    [J]. GEOFLUIDS, 2018,
  • [4] Numerical modeling for the mechanical behavior of marine gas hydrate-bearing sediments during hydrate production by depressurization
    Sun, Xiang
    Wang, Lei
    Luo, Hao
    Song, Yongchen
    Li, Yanghui
    [J]. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 177 : 971 - 982
  • [5] Effects of Irreducible Fluid Saturation and Gas Entry Pressure on Gas Production from Hydrate-Bearing Clayey Silt Sediments by Depressurization
    Ma, Xiaolong
    Sun, Youhong
    Guo, Wei
    Jia, Rui
    Li, Bing
    [J]. GEOFLUIDS, 2020, 2020
  • [6] Multi-well strategy for gas production by depressurization from methane hydrate-bearing sediments
    Terzariol, M.
    Santamarina, J. C.
    [J]. ENERGY, 2021, 220
  • [7] Gas production from heterogeneous hydrate-bearing sediments by depressurization in a large-scale simulator
    Li, Nan
    Zhang, Jie
    Xia, Ming-Ji
    Sun, Chang-Yu
    Liu, Yan-Sheng
    Chen, Guang-Jin
    [J]. ENERGY, 2021, 234
  • [8] Gas production behavior from hydrate-bearing fine natural sediments through optimized step-wise depressurization
    Zhao, Jiafei
    Liu, Yulong
    Guo, Xianwei
    Wei, Rupeng
    Yu, Tianbo
    Xu, Lei
    Sun, Lingjie
    Yang, Lei
    [J]. APPLIED ENERGY, 2020, 260
  • [9] Sand production model in gas hydrate-bearing sediments
    Uchida, Shun
    Klar, Assaf
    Yamamoto, Koji
    [J]. INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2016, 86 : 303 - 316
  • [10] Experimental investigation on the geological responses and production behaviors of natural gas hydrate-bearing sediments under various hydrate saturations and depressurization strategies
    Zhao, Yingjie
    Hu, Wei
    Dou, Xiaofeng
    Liu, Zhichao
    Ning, Fulong
    [J]. APPLIED ENERGY, 2024, 374