Learning Minimum Bounding Rectangles for Efficient Trajectory Similarity Search

被引:1
|
作者
Ramadhan, Hani [1 ]
Kwon, Joonho [2 ]
机构
[1] Pusan Natl Univ, Big Data Dept, Busan, South Korea
[2] Pusan Natl Univ, Sch Comp Sci & Engn, Busan, South Korea
基金
新加坡国家研究基金会;
关键词
big mobility data; similar trajectory search; learned index;
D O I
10.1109/BigData50022.2020.9377839
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Early pruning of dissimilar trajectories is important in similar trajectory search on a big mobility data. R-trees can perform the pruning effectively, but the search and index size become inefficient due to numerous overlapping of minimum bounding regions in a dense and big dataset. Thus, we introduce the extended usage of learned index to learn the minimum bounding rectangles for trajectory similarity search. Our approach is designed to provide an effective pruning for trajectory similarity search with less storage size.
引用
收藏
页码:5810 / 5812
页数:3
相关论文
共 50 条
  • [1] Approximating Images Using Minimum Bounding Rectangles
    Sleit, Azzam
    Salah, Imad
    Jabay, Rahmeh
    [J]. 2008 FIRST INTERNATIONAL CONFERENCE ON THE APPLICATIONS OF DIGITAL INFORMATION AND WEB TECHNOLOGIES, VOLS 1 AND 2, 2008, : 401 - 403
  • [2] Spatial relations, minimum bounding rectangles, and spatial data structures
    Papadias, D
    Theodoridis, Y
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 1997, 11 (02) : 111 - 138
  • [3] Efficient Similarity Search on 3D Bounding Box Annotations
    Kriegel, Hans-Peter
    Petri, Marisa
    Schubert, Matthias
    Shekelyan, Michael
    Stockerl, Michael
    [J]. MEDICAL IMAGING 2012: ADVANCED PACS-BASED IMAGING INFORMATICS AND THERAPEUTIC APPLICATIONS, 2012, 8319
  • [4] Range Queries over a Compact Representation of Minimum Bounding Rectangles
    Brisaboa, Nieves R.
    Luaces, Miguel R.
    Navarro, Gonzalo
    Seco, Diego
    [J]. ADVANCES IN CONCEPTUAL MODELING: APPLICATIONS AND CHALLENGES, 2010, 6413 : 33 - +
  • [5] Efficient Trajectory Similarity Computation with Contrastive Learning
    Deng, Liwei
    Zhao, Yan
    Fu, Zidan
    Sun, Hao
    Liu, Shuncheng
    Zheng, Kai
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 365 - 374
  • [6] Pivot learning for efficient similarity search
    Kimura, Manabu
    Saito, Kazumi
    Ueda, Naonori
    [J]. KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS: KES 2007 - WIRN 2007, PT III, PROCEEDINGS, 2007, 4694 : 227 - +
  • [7] Transfer-learning-based representation learning for trajectory similarity search
    Lai, Danling
    Qu, Jianfeng
    Sang, Yu
    Chen, Xi
    [J]. GEOINFORMATICA, 2024, 28 (04) : 631 - 648
  • [8] QMBRI: INVERSE QUANTIZATION OF MINIMUM BOUNDING RECTANGLES FOR SPATIAL DATA COMPRESSION
    Kim, Jongwan
    Oh, Dukshin
    Kim, Keecheon
    [J]. COMPUTING AND INFORMATICS, 2013, 32 (04) : 679 - 696
  • [9] LOWER-DIMENSIONAL TRANSFORMATIONS FOR HIGH -DIMENSIONAL MINIMUM BOUNDING RECTANGLES
    Choi, Mi-Jung
    Loh, Woong-Kee
    Moon, Yang-Sae
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2013, 9 (04): : 1423 - 1438
  • [10] Similarity Search for Efficient Active Learning and Search of Rare Concepts
    Coleman, Cody
    Chou, Edward
    Katz-Samuels, Julian
    Culatana, Sean
    Bailis, Peter
    Berg, Alexander C.
    Nowak, Robert
    Sumbaly, Roshan
    Zaharia, Matei
    Yalniz, I. Zeki
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 6402 - 6410