Metal oxide buffer layer for improving performance of polymer solar cells

被引:9
|
作者
Zhao, Zhouying [1 ]
Teki, Ranganath [2 ]
Koratkar, Nikhil [3 ]
Efstathiadis, Harry [1 ]
Haldar, Pradeep [1 ]
机构
[1] SUNY Albany, Coll Nanoscale Sci & Engn, Albany, NY 12203 USA
[2] Rensselaer Polytech Inst, Dept Chem & Biol Engn, Troy, NY 12180 USA
[3] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA
关键词
ZnO; Metal oxide; Optical tuner; Buffer; Polymer solar cells; BANDGAP; SINGLE; FILMS;
D O I
10.1016/j.apsusc.2010.03.118
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report the application of aluminum doped ZnO (ZnO:Al) layer as a buffer on ITO glass for fabrication of non-inverted polymer solar cells. The ZnO: Al thin film was deposited using DC magnetron sputtering, with the thickness being varied from 23 to 100 nm. The devices showed most discernible improvements in their efficiencies when a thin layer of ZnO:Al film of thickness similar to 40nm was introduced. The observed enhancement in short circuit current density and open circuit voltage is likely attributed to the role of the ZnO:Al film as an optical tuner and an interfacial diffusion barrier. The result suggests that a metal oxide layer inserted between ITO and polymer layers can be a route for improving both efficiency and stability of polymer solar cells. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:6053 / 6056
页数:4
相关论文
共 50 条
  • [1] Role of oxide buffer layer in polymer solar cells with inverted structure
    Zhang, Qifeng
    Wiranwetchayan, Orawan
    Liang, Zhiqiang
    Cao, Guozhong
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [2] Ultrathin Anode Buffer Layer for Enhancing Performance of Polymer Solar Cells
    Wang, Dun
    Wang, Jian
    Li, Ling-liang
    An, Qiao-shi
    Huang, Hui
    Jiao, Chao-qun
    Liu, Yang
    Zhang, Fu-jun
    [J]. INTERNATIONAL JOURNAL OF PHOTOENERGY, 2014, 2014
  • [3] Effect of anode buffer layer modification on the performance of polymer solar cells
    Li X.
    Xu D.-H.
    Zhao J.
    Geng A.-C.
    Deng Z.-B.
    [J]. Faguang Xuebao/Chinese Journal of Luminescence, 2016, 37 (03): : 321 - 326
  • [4] Performance improvement of inverted polymer solar cells thermally evaporating nickel oxide as an anode buffer layer
    Yu, Wenjuan
    Shen, Liang
    Ruan, Shengping
    Meng, Fanxu
    Wang, Jialue
    Zhang, Enrui
    Chen, Weiyou
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 98 : 212 - 215
  • [5] Improving Performance of Organic Solar Cells Using Ytterbium as Buffer Layer on Cathodes
    Oh, Il-Soo
    Chung, Chan-Moon
    Oh, Se-Young
    [J]. SCIENCE OF ADVANCED MATERIALS, 2014, 6 (11) : 2585 - 2589
  • [6] Performance improvement of conjugated polymer and ZnO hybrid solar cells using nickel oxide as anode buffer layer
    Tan, H. R.
    Zhang, X. W.
    Tan, F. R.
    Gao, H. L.
    Yin, Z. G.
    Bai, Y. M.
    Zhang, X. L.
    Qu, S. C.
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (12): : 2865 - 2870
  • [7] Replacing the metal oxide layer with a polymer surface modifier for high-performance inverted polymer solar cells
    Lee, Tack Ho
    Choi, Hyosung
    Walker, Bright
    Kim, Taehyo
    Kim, Hak-Beom
    Kim, Jin Young
    [J]. RSC ADVANCES, 2014, 4 (09): : 4791 - 4795
  • [8] Improving the performance of polymer solar cells by efficient optimizing the hole transport layer-graphene oxide
    Huang, Xinxin
    Yu, Huangzhong
    Wu, Zuping
    Li, Yanping
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2018, 22 (02) : 317 - 329
  • [9] Improving the performance of polymer solar cells by efficient optimizing the hole transport layer-graphene oxide
    Xinxin Huang
    Huangzhong Yu
    Zuping Wu
    Yanping Li
    [J]. Journal of Solid State Electrochemistry, 2018, 22 : 317 - 329
  • [10] Effects of molybdenum oxide anode buffer layer on performance of organic solar cells
    Li, Shuang
    Zhou, Xiang
    [J]. Faguang Xuebao/Chinese Journal of Luminescence, 2010, 31 (02): : 291 - 295