Quasisymmetric Maps on Kakeya Sets

被引:0
|
作者
Orponen, Tuomas [1 ]
机构
[1] Univ Finland, Dept Math & Stat, Univ Helsinki, Gustaf Hallstrominkatu 2B, Helsinki 00014, Finland
基金
芬兰科学院;
关键词
D O I
10.1093/imrn/rnw131
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
I show that L-p - L-q estimates for the Kakeya maximal function yield lower bounds for the conformal dimension of Kakeya sets, and upper bounds for how much quasisymmetries can increase the Hausdorff dimension of line segments inside Kakeya sets. Combining the known L-p - L-q estimates of Wolff and Katz-Tao with the main result of the paper, the conformal dimension of Kakeya sets in R-n is at least max{(n+2)/2, (4n+3)/7}. Moreover, if f is a quasisymmetry from a Kakeya set K subset of R-n onto any at most n-dimensional metric space, the f - image of a.e. line segment inside K has dimension at most min{2n/(n + 2), 7n/(4n+3)}. The Kakeya maximal function conjecture implies that the bounds can be improved to n and 1, respectively.
引用
收藏
页码:3413 / 3425
页数:13
相关论文
共 50 条
  • [1] Upper sets and quasisymmetric maps
    Trotsenko, DA
    Väisälä, J
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1999, 24 (02) : 465 - 488
  • [2] Quasisymmetric geometry of the Julia sets of McMullen maps
    Qiu, Weiyuan
    Yang, Fei
    Yin, Yongcheng
    [J]. SCIENCE CHINA-MATHEMATICS, 2018, 61 (12) : 2283 - 2298
  • [3] Quasisymmetric geometry of the Julia sets of McMullen maps
    Weiyuan Qiu
    Fei Yang
    Yongcheng Yin
    [J]. Science China Mathematics, 2018, 61 : 2283 - 2298
  • [4] Planar relative Schottky sets and quasisymmetric maps
    Merenkov, Sergei
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2012, 104 : 455 - 485
  • [5] QUASISYMMETRIC GEOMETRY OF THE CANTOR CIRCLES AS THE JULIA SETS OF RATIONAL MAPS
    Qiu, Weiyuan
    Yang, Fei
    Yin, Yongcheng
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (06) : 3375 - 3416
  • [6] SHEARS FOR QUASISYMMETRIC MAPS
    Saric, Dragomir
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (06) : 2487 - 2499
  • [7] Kakeya sets of curves
    Wisewell, L
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2005, 15 (06) : 1319 - 1362
  • [8] Minimal Kakeya Sets
    Dover, Jeremy M.
    Mellinger, Keith E.
    Scott, Kelly E.
    [J]. JOURNAL OF COMBINATORIAL DESIGNS, 2014, 22 (02) : 95 - 104
  • [9] Kakeya sets of curves
    L. Wisewell
    [J]. Geometric & Functional Analysis GAFA, 2005, 15 : 1319 - 1362
  • [10] ON THE EXTENSION OF QUASISYMMETRIC MAPS
    Alestalo, Pekka
    Trotsenko, Dmitry Alexandrovich
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2016, 41 (02) : 881 - 896