Monte Carlo methods in statistical physics: Mathematical foundations and strategies

被引:24
|
作者
Kastner, Michael [1 ]
机构
[1] Natl Inst Theoret Phys NITheP, ZA-7600 Stellenbosch, South Africa
关键词
Monte Carlo; Markov chain; Statistical physics; SIMULATIONS; METROPOLIS; ALGORITHMS; EFFICIENT; MODEL;
D O I
10.1016/j.cnsns.2009.06.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Monte Carlo is a versatile and frequently used tool in statistical physics and beyond. Correspondingly, the number of algorithms and variants reported in the literature is vast, and ail overview is not easy to achieve. In this pedagogical review, we start by presenting the probabilistic concepts which are at the basis of the Monte Carlo method. From these concepts the relevant free parameters-which still may be adjusted-are identified. Having identified these parameters, most of the tangled mass of methods and algorithms in statistical physics Monte Carlo can be regarded as realizations of merely a handful of basic strategies which are employed in order to improve convergence of a Monte Carlo computation. Once the notations introduced are available, many of the most widely used Monte Carlo methods and algorithms can be formulated in a few lines. In Such a formulation, the core ideas are exposed and possible generalizations of the methods are less obscured by the details of a particular algorithm. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1589 / 1602
页数:14
相关论文
共 50 条
  • [1] Monte Carlo methods in classical statistical physics
    Janke, Wolfhard
    [J]. COMPUTATIONAL MANY-PARTICLE PHYSICS, 2008, 739 : 79 - 140
  • [2] Applications of Monte Carlo methods to statistical physics
    Binder, K
    [J]. REPORTS ON PROGRESS IN PHYSICS, 1997, 60 (05) : 487 - 559
  • [3] Efficient Monte Carlo simulation methods in statistical physics
    Wang, JS
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS 2000, 2002, : 141 - 157
  • [6] Monte Carlo methods in statistical mechanics: Foundations and new algorithms
    Sokal, A
    [J]. FUNCTIONAL INTEGRATION: BASICS AND APPLICATIONS, 1997, 361 : 131 - 192
  • [7] MONTE CARLO METHODS - METHODS STATISTICAL TESTING/MONTE CARLO METHOD
    MULLER, ME
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (02): : 532 - &
  • [8] Kinetic Monte Carlo Method: Mathematical Foundations and Applications for Physics of Low-Dimensional Nanostructures
    Kolesnikov S.V.
    Saletsky A.M.
    Dokukin S.A.
    Klavsyuk A.L.
    [J]. Mathematical Models and Computer Simulations, 2018, 10 (5) : 564 - 587
  • [9] The metropolis Monte Carlo method in statistical physics
    Landau, DP
    [J]. MONTE CARLO METHOD IN THE PHYSICAL SCIENCES, 2003, 690 : 134 - 146
  • [10] Monte Carlo simulations for statistical physics: Janus
    Belletti, F.
    Cotallo, M.
    Cruz, A.
    Fernandez, L. A.
    Gordillo-Guerrero, A.
    Guidetti, M.
    Maiorano, A.
    Mantovani, F.
    Marinari, E.
    Martin-Mayor, V.
    Munoz Sudupe, A.
    Navarro, D.
    Parisi, G.
    Perez-Gaviro, S.
    Rossi, M.
    Ruiz-Lorenzo, J. J.
    Saenz-Lorenzo, J. F.
    Schifano, S. F.
    Sciretti, D.
    Tarancon, A.
    Tripiccione, R.
    Velasco, J. L.
    Yllanes, D.
    Zanier, G.
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2008, 123 (6-7): : 972 - 974