Impact of Initialized Land Surface Temperature and Snowpack on Subseasonal to Seasonal Prediction Project, Phase I (LS4P-I): organization and experimental design

被引:39
|
作者
Xue, Yongkang [1 ]
Yao, Tandong [2 ]
Boone, Aaron A. [3 ]
Diallo, Ismaila [1 ]
Liu, Ye [1 ]
Zeng, Xubin [4 ]
Lau, William K. M. [5 ]
Sugimoto, Shiori [6 ]
Tang, Qi [7 ]
Pan, Xiaoduo [2 ]
van Oevelen, Peter J. [8 ]
Klocke, Daniel [9 ]
Koo, Myung-Seo [10 ]
Sato, Tomonori [11 ]
Lin, Zhaohui [12 ]
Takaya, Yuhei [13 ]
Ardilouze, Constantin [3 ]
Materia, Stefano [14 ]
Saha, Subodh K. [15 ]
Senan, Retish [16 ]
Nakamura, Tetsu [11 ]
Wang, Hailan [17 ]
Yang, Jing [18 ]
Zhang, Hongliang [19 ]
Zhao, Mei [20 ]
Liang, Xin-Zhong [5 ]
Neelin, J. David [1 ]
Vitart, Frederic [16 ]
Li, Xin [2 ]
Zhao, Ping [21 ]
Shi, Chunxiang [22 ]
Guo, Weidong [23 ]
Tang, Jianping [23 ]
Yu, Miao [24 ]
Qian, Yun [25 ]
Shen, Samuel S. P. [26 ]
Zhang, Yang [23 ]
Yang, Kun [27 ]
Leung, Ruby [25 ]
Qiu, Yuan [12 ]
Peano, Daniele [14 ]
Qi, Xin [18 ]
Zhan, Yanling [12 ]
Brunke, Michael A. [4 ]
Chou, Sin Chan [28 ]
Ek, Michael [29 ]
Fan, Tianyi [10 ,18 ]
Guan, Hong [30 ]
Lin, Hai [31 ]
Liang, Shunlin [32 ]
机构
[1] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
[2] Chinese Acad Sci, Inst Tibetan Plateau Res, Beijing, Peoples R China
[3] Univ Toulouse, CNRS, CNRM, Meteo France, Toulouse, France
[4] Univ Arizona, Tucson, AZ USA
[5] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA
[6] Japan Agcy Marine Earth Sci & Technol JAMSTEC, Yokohama, Kanagawa, Japan
[7] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[8] George Mason Univ, Int GEWEX Project Off, Fairfax, VA 22030 USA
[9] Max Planck Inst Meteorol, D-20146 Hamburg, Germany
[10] Korea Inst Atmospher Predict Syst, Seoul, South Korea
[11] Hokkaido Univ, Sapporo, Hokkaido, Japan
[12] Chinese Acad Sci, Inst Atmospher Phys, Beijing, Peoples R China
[13] Japan Meteorol Agcy, Meteorol Res Inst, Tsukuba, Ibaraki, Japan
[14] Fdn Ctr Euro Mediterraneo Cambiamenti Climat CMCC, Climate Simulat & Predict CSP, Bologna, Italy
[15] Minist Earth Sci, Indian Inst Trop Meteorol, Pune, Maharashtra, India
[16] European Ctr Medium Range Weather Forecasts ECMWF, Reading, Berks, England
[17] NOAA, Natl Ctr Environm Predict, Natl Weather Serv, College Pk, MD USA
[18] Beijing Normal Univ, Beijing, Peoples R China
[19] China Meteorol Adm, Natl Meteorol Ctr, Beijing, Peoples R China
[20] Bur Meteorol, Melbourne, Vic, Australia
[21] China Meteorol Adm, Chinese Acad Meteorol Sci, Beijing, Peoples R China
[22] China Meteorol Adm, Natl Meteorol Informat Ctr, Beijing, Peoples R China
[23] Nanjing Univ, Sch Atmospher Sci, Nanjing, Peoples R China
[24] Nanjing Univ Informat Sci & Technol, Nanjing 210044, Peoples R China
[25] Pacific Northwest Natl Lab, Richland, WA 99352 USA
[26] San Diego State Univ, San Diego, CA 92182 USA
[27] Tsinghua Univ, Beijing, Peoples R China
[28] Natl Inst Space Res INPE, Cachoeira Paulista, Brazil
[29] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA
[30] NCEP NWS NOAA, Syst Res Grp Inc, Environm Modeling Ctr, College Pk, MD USA
[31] Environm & Climate Change Canada, Dorval, PQ, Canada
[32] Univ Maryland, College Pk, MD 20742 USA
[33] China Meteorol Adm, Natl Climate Ctr, Beijing, Peoples R China
[34] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA
[35] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12203 USA
[36] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing, Peoples R China
[37] Yonsei Univ, Seoul, South Korea
[38] Sun Yat Sen Univ, Guangzhou, Peoples R China
[39] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Lanzhou, Peoples R China
[40] Univ Chinese Acad Sci, Beijing 100101, Peoples R China
[41] Univ Connecticut, Storrs, CT USA
[42] Tokyo Metropolitan Univ, Tokyo, Japan
基金
美国国家科学基金会;
关键词
LONG-TERM DROUGHT; SOIL-MOISTURE; CUMULUS CONVECTION; TIBETAN PLATEAU; BOUNDARY-LAYER; UNITED-STATES; CLIMATE SIMULATIONS; DECADAL VARIABILITY; BLACK CARBON; PART I;
D O I
10.5194/gmd-14-4465-2021
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Subseasonal-to-seasonal (S2S) prediction, especially the prediction of extreme hydroclimate events such as droughts and floods, is not only scientifically challenging, but also has substantial societal impacts. Motivated by preliminary studies, the Global Energy and Water Exchanges (GEWEX)/Global Atmospheric System Study (GASS) has launched a new initiative called "Impact of Initialized Land Surface Temperature and Snowpack on Subseasonal to Seasonal Prediction" (LS4P) as the first international grassroots effort to introduce spring land surface temperature (LST)/subsurface temperature (SUBT) anomalies over high mountain areas as a crucial factor that can lead to significant improvement in precipitation prediction through the remote effects of land-atmosphere interactions. LS4P focuses on process understanding and predictability, and hence it is different from, and complements, other international projects that focus on the operational S2S prediction. More than 40 groups worldwide have participated in this effort, including 21 Earth system models, 9 regional climate models, and 7 data groups. This paper provides an overview of the history and objectives of LS4P, provides the first-phase experimental protocol (LS4P-I) which focuses on the remote effect of the Tibetan Plateau, discusses the LST/SUBT initialization, and presents the preliminary results. Multi-model ensemble experiments and analyses of observational data have revealed that the hydroclimatic effect of the spring LST on the Tibetan Plateau is not limited to the Yangtze River basin but may have a significant large-scale impact on summer precipitation beyond East Asia and its S2S prediction. Preliminary studies and analysis have also shown that LS4P models are unable to preserve the initialized LST anomalies in producing the observed anomalies largely for two main reasons: (i) inadequacies in the land models arising from total soil depths which are too shallow and the use of simplified parameterizations, which both tend to limit the soil memory; (ii) reanalysis data, which are used for initial conditions, have large discrepancies from the observed mean state and anomalies of LST over the Tibetan Plateau. Innovative approaches have been developed to largely overcome these problems.
引用
收藏
页码:4465 / 4494
页数:30
相关论文
共 2 条
  • [1] Remote effects of Tibetan Plateau spring land temperature on global subseasonal to seasonal precipitation prediction and comparison with effects of sea surface temperature: the GEWEX/LS4P Phase I experiment
    Yongkang Xue
    Ismaila Diallo
    Aaron A. Boone
    Yang Zhang
    Xubin Zeng
    William K. M. Lau
    J. David Neelin
    Tandong Yao
    Qi Tang
    Tomonori Sato
    Myung-Seo Koo
    Frederic Vitart
    Constantin Ardilouze
    Subodh K. Saha
    Stefano Materia
    Zhaohui Lin
    Yuhei Takaya
    Jing Yang
    Tetsu Nakamura
    Xin Qi
    Yi Qin
    Paulo Nobre
    Retish Senan
    Hailan Wang
    Hongliang Zhang
    Mei Zhao
    Hara Prasad Nayak
    Yan Pan
    Xiaoduo Pan
    Jinming Feng
    Chunxiang Shi
    Shaocheng Xie
    Michael A. Brunke
    Qing Bao
    Marcus Jorge Bottino
    Tianyi Fan
    Songyou Hong
    Yanluan Lin
    Daniele Peano
    Yanling Zhan
    Carlos R. Mechoso
    Xuejuan Ren
    Gianpaolo Balsamo
    Sin Chan Chou
    Patricia de Rosnay
    Peter J. van Oevelen
    Daniel Klocke
    Michael Ek
    Xin Li
    Weidong Guo
    [J]. Climate Dynamics, 2024, 62 : 2603 - 2628
  • [2] Remote effects of Tibetan Plateau spring land temperature on global subseasonal to seasonal precipitation prediction and comparison with effects of sea surface temperature: the GEWEX/LS4P Phase I experiment
    Xue, Yongkang
    Diallo, Ismaila
    Boone, Aaron A.
    Zhang, Yang
    Zeng, Xubin
    Lau, William K. M.
    Neelin, J. David
    Yao, Tandong
    Tang, Qi
    Sato, Tomonori
    Koo, Myung-Seo
    Vitart, Frederic
    Ardilouze, Constantin
    Saha, Subodh K.
    Materia, Stefano
    Lin, Zhaohui
    Takaya, Yuhei
    Yang, Jing
    Nakamura, Tetsu
    Qi, Xin
    Qin, Yi
    Nobre, Paulo
    Senan, Retish
    Wang, Hailan
    Zhang, Hongliang
    Zhao, Mei
    Nayak, Hara Prasad
    Pan, Yan
    Pan, Xiaoduo
    Feng, Jinming
    Shi, Chunxiang
    Xie, Shaocheng
    Brunke, Michael A.
    Bao, Qing
    Bottino, Marcus Jorge
    Fan, Tianyi
    Hong, Songyou
    Lin, Yanluan
    Peano, Daniele
    Zhan, Yanling
    Mechoso, Carlos R.
    Ren, Xuejuan
    Balsamo, Gianpaolo
    Chou, Sin Chan
    de Rosnay, Patricia
    van Oevelen, Peter J.
    Klocke, Daniel
    Ek, Michael
    Li, Xin
    Guo, Weidong
    [J]. CLIMATE DYNAMICS, 2024, 62 (04) : 2603 - 2628