Discrete breathers - Recent results and applications

被引:0
|
作者
Flach, S [1 ]
机构
[1] Max Planck Inst Phys Complex Syst, D-01187 Dresden, Germany
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nontopological spatially localized time periodic excitations - coined discrete breathers - are generic solutions for lattice Hamiltonians. I present recent results including the spatial decay of discrete breathers in systems with interactions decaying algebraically in space, the properties of the static deformation accompanying a breather excitation in low-symmetry lattice Hamiltonians with Goldstone modes, nonzero energy thresholds in lattice dimensions d greater than or equal to 2, models with analytic solutions and compact solutions. Finally I will discuss several experimental applications.
引用
收藏
页码:389 / 395
页数:7
相关论文
共 50 条
  • [1] Discrete breathers in nonlinear lattices: A review and recent results
    Bountis, T
    Bergamin, JM
    GALAXIES AND CHAOS, 2003, 626 : 75 - 90
  • [2] Discrete breathers - Advances in theory and applications
    Flach, Sergej
    Gorbach, Andrey V.
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 467 (1-3): : 1 - 116
  • [3] Discrete Breathers
    Flach, S.
    Willis, C. R.
    Physics Reports, 295 (05):
  • [4] Discrete breathers
    Flach, S
    Willis, CR
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 295 (05): : 181 - 264
  • [5] Discrete breathers in a nutshell
    Flach, Sergej
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2012, 3 (01): : 12 - 26
  • [6] Discrete breathers in crystals
    Dmitriev, S. V.
    Korznikova, E. A.
    Baimova, Yu A.
    Velarde, M. G.
    PHYSICS-USPEKHI, 2016, 59 (05) : 446 - 461
  • [7] Stability of discrete breathers
    MacKay, R.S.
    Sepulchre, J.-A.
    Physica D: Nonlinear Phenomena, 1998, 119 (1/2): : 148 - 162
  • [8] Breathers in nonlinear lattices - Recent results from the concept of anticontinuity
    Aubry, S
    PROGRESS IN STATISTICAL PHYSICS, 1998, : 131 - 157
  • [9] Moving discrete breathers?
    Flach, S
    Kladko, K
    PHYSICA D-NONLINEAR PHENOMENA, 1999, 127 (1-2) : 61 - 72
  • [10] Stability of discrete breathers
    MacKay, RS
    Sepulchre, JA
    PHYSICA D, 1998, 119 (1-2): : 148 - 162