Effects of the combined usage of nanomaterials and steel fibres on the workability, compressive strength, and microstructure of ultra-high performance concrete

被引:28
|
作者
Huang, Kunhong [1 ]
Xie, Jianhe [2 ]
Wang, Ronghui [1 ]
Feng, Yuan [2 ]
Rao, Rui [3 ]
机构
[1] South China Univ Technol, Sch Civil Engn & Transportat, Guangzhou 510641, Peoples R China
[2] Guangdong Univ Technol, Sch Civil & Transportat Engn, Guangzhou 510006, Guangdong, Peoples R China
[3] Guangzhou Univ, Res Ctr Wind Engn & Engn Vibrat, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
ultra-high performance concrete; nanomaterials; steel fibres; mixing method; fluidity; compression; NANO-SILICA; MECHANICAL-PROPERTIES; REINFORCED CONCRETE; FRESH PROPERTIES; RESISTANCE; NANOPARTICLES; CARBONATION; NANO-SIO2; HYDRATION;
D O I
10.1515/ntrev-2021-0029
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Using nanomaterials to enhance concrete performance is of particular interest to meet the safety and functionality requirements of engineering structures. However, there are few comprehensive comparisons of the effects of different nanomaterials on the properties of ultra-high performance concretes (UHPCs) with a compressive strength of more than 150 MPa. The aim of the present study was to assess the coupling effects of nanomaterials and steel fibres on the workability and compressive performance of UHPC. Three types of nanomaterials, nano-SiO2 (NS), nano-calcium carbonate (NC), and carbon nanofibre (CNF), were each added into UHPC mixes by quantity substitution of the binder; two types of steel fibres were investigated; and two mixing methods were used for casting the UHPC. In addition, the effect of curing age (7 or 28 days) on the compressive performance of the mixtures was considered. Comprehensive studies were conducted on the effects of these test variables on the fluidity, compressive strength, failure mode, and microstructure. The results show that the combination of these nanomaterials and steel fibres can provide good synergetic effects on the compressive performance of UHPC and that the addition of CNF results in a greater enhancement than the addition of NS or NC. The addition of NS, not CNF or NC, has a considerable negative influence on the fluidity of the UHPC paste. It is suggested that reducing the agglomeration of the nano-materials would further improve the performance of the resulting UHPC.
引用
收藏
页码:304 / 317
页数:14
相关论文
共 50 条
  • [1] Effects of recycled sand and nanomaterials on ultra-high performance concrete: Workability, compressive strength and microstructure
    Feng, Yuan
    Zhang, Baifa
    Xie, Jianhe
    Xue, Zixin
    Huang, Kunhong
    Tan, Jiakun
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 378
  • [2] The influence of steel fibres on compressive and tensile strength of ultra high performance concrete: A review
    Larsen, Ingrid Lande
    Thorstensen, Rein Terje
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 256
  • [3] Effect of steel fiber on the compressive performance and microstructure of ultra-high performance concrete at elevated temperatures
    Gao, Danying
    Zhang, Wei
    Tang, Jiyu
    Zhu, Zhihao
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 435
  • [4] Effects of different nanomaterials on hardening and performance of ultra-high strength concrete (UHSC)
    Wu, Zemei
    Shi, Caijun
    Khayat, K. H.
    Wan, Shu
    CEMENT & CONCRETE COMPOSITES, 2016, 70 : 24 - 34
  • [5] Effects of key parameters on fluidity and compressive strength of ultra-high performance concrete
    Chang, Wei
    Zheng, Wenzhong
    STRUCTURAL CONCRETE, 2020, 21 (02) : 747 - 760
  • [6] Analysis of Compressive Strength Development of Ultra-high Performance Concrete
    HAN Fangyu
    LIU Jianzhong
    ZHANG Qianqian
    LIU Jiaping
    SHI Liang
    Journal of the Chinese Ceramic Society, 2016, 3 (03) : 145 - 152
  • [7] Study on the compressive strength and mixing of ultra-high performance concrete
    Feng, Su Li
    Zhao, Peng
    ARCHITECTURE, BUILDING MATERIALS AND ENGINEERING MANAGEMENT, PTS 1-4, 2013, 357-360 : 825 - +
  • [8] The Compressive Strength of Ultra-high Performance Concrete at Elevated Temperatures
    MacDougall, Branna
    Hajiloo, Hamzeh
    Sarhat, Salah
    Kabanda, John
    Green, Mark
    PROCEEDINGS OF THE CANADIAN SOCIETY OF CIVIL ENGINEERING ANNUAL CONFERENCE 2022, VOL 4, CSCE 2022, 2024, 367 : 895 - 906
  • [9] The Compressive Strength of Ultra-high Performance Concrete at Elevated Temperatures
    MacDougall, Branna
    Hajiloo, Hamzeh
    Sarhat, Salah
    Kabanda, John
    Green, Mark
    PROCEEDINGS OF THE CANADIAN SOCIETY OF CIVIL ENGINEERING ANNUAL CONFERENCE 2022, VOL 3, CSCE 2022, 2024, 359 : 895 - 906
  • [10] Shear resistance of concrete reinforced with ultra-high strength steel fibres
    Gomes J.
    Sousa C.
    Pimentel M.
    Proença A.M.
    Neves A.S.
    Ciencia e Tecnologia dos Materiais, 2017, 29 (01): : e182 - e186