Characterization of polymer based composite using neuro-fuzzy model

被引:0
|
作者
Almtori, Safaa A. S. [1 ]
Al-Fahad, Imad O. Bachi [1 ]
Al-temimi, Atheed Habeeb Taha [1 ]
Jassim, A. K. [2 ]
机构
[1] Univ Basra, Coll Engn, Mat Engn Dept, Basra, Iraq
[2] State Co Iron & Steel, Res & Dev Dept, Basra, Iraq
关键词
Mulch; Waste tires; High density polyethylene; Composite materials; Neuro-fuzzy modelling; COMPRESSIVE STRENGTH; PREDICTION; CONCRETE; RUBBER; POWDER;
D O I
10.1016/j.matpr.2020.12.238
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dealing with a large quantity of waste useless tires can be considered as a big challenge nowadays. There are huge problems affected on the green world because it is non-biodegradable materials and pose a significant environmental problem. The aim of this work is to prevent the air and soil pollution that generated from burning the huge quantity of waste tires (natural and styrene-butadiene rubber) to derive fuel in cement kilns, paper mills, power plants and manufacturing hump and gymnasium floor. It is present as a valuable resource to prepare useful composite materials by mixing liner polymer of high density polyethylene with crosslink hard mulch (its area nearly 20 mm(2)) waste tires with percentage of 0, 17, 29, 38, 44, 50, 75, 85 and 90%. The average of three tests for each ratio was taken to comprise semi interpenetrating polymer network. The specimens were evaluated to determine their mechanical properties that include shore hardness, elastic modulus, Impact strength and compression strength. The results show the 85% is the best ratio due to an increasing in the mechanical properties of specimens on the other hand, theoretical estimate of the properties of composite specimens was done by using Neuro-fuzzy modelling. Observed good agreements between experimental and theoretical work was obtained. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1934 / 1940
页数:7
相关论文
共 50 条
  • [1] An intelligent electromyogram signal characterization method based on neuro-fuzzy model
    Azadbakht, Bakhtiar
    Zolata, Hamidreza
    Khayat, Omid
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 27 (05) : 2623 - 2634
  • [2] Position control of ionic polymer metal composite actuator based on neuro-fuzzy system
    Truong-Thinh Nguyen
    Yang, Young-Soo
    Oh, Il-Kwon
    SECOND INTERNATIONAL CONFERENCE ON SMART MATERIALS AND NANOTECHNOLOGY IN ENGINEERING, 2009, 7493
  • [3] Neuro-fuzzy model-based control
    Matko, D
    Kavsek-Biasizzo, K
    Kocijan, J
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 1998, 23 (2-4) : 249 - 265
  • [4] Neuro-fuzzy Model-based Control
    D. Matko
    K. Kavšek-Biasizzo
    J. Kocijan
    Journal of Intelligent and Robotic Systems, 1998, 23 : 249 - 265
  • [5] Neuro and neuro-fuzzy identification for model-based control
    Fink, A
    Töpfer, S
    Isermann, R
    ADVANCED FUZZY-NEURAL CONTROL 2001, 2002, : 93 - 98
  • [6] Neuro-fuzzy model-based control
    Univ of Ljubljana, Ljubljana, Slovenia
    J Intell Rob Syst Theor Appl, 2-4 (249-265):
  • [7] Control of combustion based on neuro-fuzzy model
    Hímer, Z
    Dévényi, G
    Kovács, J
    Kortela, U
    Proceedings of the IASTED International Conference on Applied Simulation and Modelling, 2004, : 13 - 17
  • [8] Adaptive neuro-fuzzy control of ionic polymer metal composite actuators
    Thinh, Nguyen Truong
    Yang, Young-Soo
    Oh, Il-Kwon
    SMART MATERIALS AND STRUCTURES, 2009, 18 (06)
  • [9] Simplifying a neuro-fuzzy model
    Castellano, G
    Fanelli, AM
    NEURAL PROCESSING LETTERS, 1996, 4 (02) : 75 - 81
  • [10] Generalized predictive control using a neuro-fuzzy model
    Hu, JQ
    Rose, E
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1999, 30 (01) : 117 - 122