Travelling wave solutions to Zufiria's higher-order Boussinesq type equations

被引:2
|
作者
Gao, Liang [1 ]
Ma, Wen-Xiu [2 ]
Xu, Wei [1 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710072, Shaanxi, Peoples R China
[2] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
基金
中国国家自然科学基金;
关键词
Zufiria's higher-order Boussinesq type equations; Periodic wave; Solitary wave; Periodic-like wave; Soliton-like wave; Jacobi elliptic function periodic wave; Weierstrass elliptic function periodic; Rational solutions; JACOBI ELLIPTIC FUNCTION; VARIABLE SEPARATION SOLUTIONS; FUNCTION EXPANSION METHOD; SOLITARY WAVE; SHALLOW-WATER; BACKLUND TRANSFORMATION; SYMBOLIC COMPUTATION; PERIODIC-SOLUTIONS; F-EXPANSION; KDV-MKDV;
D O I
10.1016/j.na.2008.11.069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Zufiria's higher-order Boussinesq type equations are studied by transforming them into solvable ordinary differential equations. Various families of their travelling wave solutions are generated, which include periodic wave, solitary wave, periodic-like wave, soliton-like wave, Jacobi elliptic function periodic wave, combined non-degenerative Jacobi elliptic function-like wave, Weierstrass elliptic function periodic and rational solutions. The presented approach can be also applied to nonlinear wave equations with variable coefficients in mathematical physics and mechanics. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:E711 / E724
页数:14
相关论文
共 50 条
  • [1] Water wave solutions of Zufiria's higher-order Boussinesq type equations and its stability
    Seadawy, A. R.
    El-Kalaawy, O. H.
    Aldenari, R. B.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 280 : 57 - 71
  • [2] Travelling Wave Solutions to the Benney-Luke and the Higher-Order Improved Boussinesq Equations of Sobolev Type
    Gozukizil, Omer Faruk
    Akcagil, Samil
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [3] Travelling wave solutions for higher-order wave equations of KDV type (III)
    Li, JB
    Rui, WG
    Long, Y
    He, B
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2006, 3 (01) : 125 - 135
  • [4] A type of the travelling wave solutions of higher-order Camassa-Holm equations
    Xue, Fenggang
    Ding, Danping
    [J]. PROCEEDINGS OF THE 2013 INTERNATIONAL CONFERENCE ON INFORMATION, BUSINESS AND EDUCATION TECHNOLOGY (ICIBET 2013), 2013, 26 : 160 - 163
  • [5] Travelling wave solutions for a higher order wave equations of KdV type(I)
    Long, Y
    Rui, WG
    He, B
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 23 (02) : 469 - 475
  • [6] Integrability Test and Travelling-Wave Solutions of Higher-Order Shallow-Water Type Equations
    Maldonado, Mercedes
    Celeste Molinero, Maria
    Pickering, Andrew
    Prada, Julia
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2010, 65 (04): : 353 - 356
  • [7] Complex solutions to the higher-order nonlinear boussinesq type wave equation transform
    Kilic, S. S. S.
    Celik, E.
    [J]. RICERCHE DI MATEMATICA, 2024, 73 (04) : 1793 - 1800
  • [8] On Higher-Order Boussinesq-Type Wave Models
    Memos, Constantine D.
    Klonaris, Georgios Th.
    Chondros, Michalis K.
    [J]. JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING, 2016, 142 (01)
  • [9] Bifurcations of travelling wave solutions for the Boussinesq equations
    Li, Hong
    Sun, Shaorong
    Li, Jibin
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (01) : 61 - 71
  • [10] Bifurcations of travelling wave solutions in variant Boussinesq equations
    Yuan, YB
    Pu, DM
    Li, SM
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2006, 27 (06) : 811 - 822